Supporting Information

Thermoregulatory elasticity braided fibers designed with core-sheath structure for

wearable personal thermal management

Chengcheng Wang,^a Jingwen Wang,^a Liping Zhang,^{*a} and Shaohai Fu^a

^a Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-

Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China.

*E-mail: zhanglp@jiangnan.edu.cn

Supplementary Methods

1. Characterization

The apparent morphology of the aerogel was characterized by a scanning electron microscopy (SEM, SU1510, Hitachi, Co., Ltd, Japan). The lamellar structure of MXene was observed by transmission electron microscope equipment (TEM, Hitachi JEM-2100). RT-IR spectra was measured by Nicolet 6700 spectrometer (Nicolet Instrument Company, Madison, WI, USA). The functional group was determined using a thermo ESCALAB 250Xi instrument equipped with a monochromatic Al Kα (15 kV 5 mA) anode X-ray gun (XPS). The universal testing machine (UTM2203) equipped with a 100 N load cell was used to the compression test. The freezing-drying was carried out via the SCIENTZ-10 N freeze dryer (NingBo Scientz Biotechnology Co., Ltd, China). The color parameters of smart fabrics were obtained by computer color matching instrument (Datacolor DC850, America).

Supplementary Figures

Fig. S1 Surface morphologies and partical enlarged detail of (a) PU, and (b) PU@GA. Cross-section morphologies of (c) PU, and (d) PU@GA.

Fig. S2 EDS-mapping images of (a) PU, (b) PU@GA, and (c) PU@GA@Ms.

Fig. S3 FTIR spectra of PU, PU@GA, PU@GA@Ms, and PPy@PU@GA@Ms.

Fig. S4 DSC curves of PU@GA and PU@GA@Ms-50%~200%.

Fig. S5 DSC curves of PPy@PU@GA@Ms in heating and cooling processes.

Fig. S6 Strain-stress curves of (a) PU@GA@Ms, and (b) PPy@PU@GA@Ms.

Fig. S7 IR thermal images of the pure glass sheet, PU@GA and PU@GA@Ms in the heating and cooling processes.

Fig. S8 IR thermal images of PU@GA@Ms-200% at different initial heating temperature and natural cooling processes.

Fig. S9 Surface temperature variation of PPy-3@PU@GA@Ms under 1000 W·m⁻² with different

irradiation time.

Supplementary Tables

Samples	7 _m (°C)	<i>T</i> _c (°C)	ΔH _m (J/g)	ΔH _c (J/g)
PU@GA			0	0
MPCM	47.45	39.60	88.01	95.14
PU@GA@Ms-50%	47.78	38.23	31.07	31.18
PU@GA@Ms-100%	48.61	37.60	32.42	32.77
PU@GA@Ms-150%	48.39	37.35	33.28	33.23
PU@GA@Ms-200%	49.05	37.33	35.10	34.78
PPy-1@PU@GA@Ms-200%	47.74	38.65	34.67	35.06
PPy-2@PU@GA@Ms-200%	47.57	39.18	35.58	35.17
PPy-3@PU@GA@Ms-200%	46.01	39.18	37.15	36.60

Table S1 The thermal data and enthalpy of MPCM and fibers

Table S2 Electrical conductivity of the PPy@PU@GA@Ms fiber

	PPy-1@PU@GA@Ms	PPy-2@PU@GA@Ms	PPy-3@PU@GA@Ms
	(KΩ/cm)	(KΩ/cm)	(KΩ/cm)
1	19.4	11.3	10.4
2	17.4	12.5	9.6
3	18.8	10.8	10.2
Average value	18.5	11.5	10.1

	Saturation				
Materials	Temperature (°C)	Strain (%)	Morphology	Ref	
	1000 W·m ⁻²				
PU/PPy/ZrC	55.8	150%	Coaxial wet spinning	S1	
PW@PU@CNTs@PEDOT:	70 F	264	Fibrous membrane	S2	
PSS	70.5				
PW@PDVB-12/PPy	47			S3	
SF/CA	45		Silk Fiber	S4	
AgNPs@PDA@PU@PW	63.2		Fibrous membrane	S5	
PPy-PU/ZrC	78	291.57	Fibrous membrane	S6	
PU/MXene@OD	65.3		Fiber	S7	
PEG-PU-CNT		6	Composite	S8	
			membrane		
BPBBT CS-3	56.1		Fibrous membrane	S9	
PPy@PU@GA@Ms	50.1	660	Fiber	This work	

Table S3 The comparison of photothermal conversion performance of fibers

Reference

- S1. Q. Yan, X. Du, Y. Liu, X. Zhou and B. Xin, ACS Applied Materials & Interfaces, 2022, 14, 24820-24831.
- S2. J. Wu, M. Wang, L. Dong, J. Shi, M. Ohyama, Y. Kohsaka, C. Zhu and H. Morikawa, ACS Nano, 2022, 16, 12801-12812.
- S3. L. Kong, Z. Wang, X. Kong, L. Wang, Z. Ji, X. Wang and X. Zhang, ACS Applied Materials & Interfaces, 2021, **13**, 29965-29974.
- S4. C. Wang, H. Dong, C. Cheng, K. Sun, T. Jin and Q. Shi, *ACS Sustainable Chemistry & Engineering*, 2022, **10**, 16368-16376.
- S5. J. Wu, M. Wang, L. Dong, Y. Zhang, J. Shi, M. Ohyama, Y. Kohsaka, C. Zhu and H. Morikawa, *Chemical Engineering Journal*, 2023, **465**, 142835.
- S6. Q. Yan, B. Xin, Z. Chen and Y. Liu, Materials Today Communications, 2021, 28, 102584.
- S7. J. Zhang, Y. Zhang, S. Wu, Y. Ji, Z. Mao, D. Wang, Z. Xu, Q. Wei and Q. Feng, *Chemical Engineering Journal*, 2024, 483, 149281.
- S8. J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool, H. Jiang, F. Xiong, M. Qin, S. Gao and R. Zou, *Journal of Materials Chemistry A*, 2020, 8, 20133-20140.
- S9. H. Li, H. Wen, Z. Zhang, N. Song, R. T. K. Kwok, J. W. Y. Lam, L. Wang, D. Wang and B. Z. Tang, *Angewandte Chemie International Edition*, 2020, **59**, 20371-20375.