Supplementary Information

The crystal prediction of Polymerph Predictor mainly includes three processes:

(1) Monte Carlo simulated annealing, which includes two stages: heating and cooling.

(2) Cluster analysis: Monte Carlo simulation will obtain a large number of unoptimized structures, including results from local energy minimization and similar structures. Cluster analysis employs a method similar to energy optimization to find representatives from similar structures and remove other redundant crystal structures.

(3) Energy minimization: the "cluster representation" obtained from (2) needs to be further refined and optimized, involving all degrees of freedom.

Specific parameter setting:

(1) Two single molecules were optimised using pbe1pbe/6-311g(d), using the optimised structure as a rigid body. Calculations of electrostatic and Van der Waals interactions were carried out by the Ewald long-range summation method.

(2) The DREIDING 2.21 force field suitable for molecular crystals was selected.

(3) Select four common spatial point groups: C2/c $P^{\overline{1}}$, P2₁, P2₁/c, and P2₁2₁2₁.

(4) The number of molecules in the asymmetric unit was chosen to be 1.

(5) The maximum temperature for simulated annealing was 10000 K and the minimum was 300 K.

By using Multiwfn software package,¹ the natural atomic orbital (NAO) can be obtained from the density matrix information of the system by analyzing the natural bond orbital (NBO). The number for NAO is the same as for the original basis function. The part of the NAO known as the minimal set corresponds to atomic orbitals in the general sense. The orbital wave functions are generally written as linear expansions of the basic functions:²

$$\Phi_i = \sum_a C_{a,i} \chi_a$$

Where *a* represents the ordinal number of the basis function. There is no strict standard for definition of the χ component of the orbital wave function, or the contribution η of χ to the orbital wave function. Any definition that satisfies both the following conditions meets the basic requirements:

$$\eta_a \ge 0$$
, $\sum_a \eta_a = 100\%$

Here, η_a is the contribution of basis function *a* to the orbital wavefunction. Suppose that the orbital wave function Φ_i is an orthogonally normalized real function, written as:

$$\int \Phi_i^2(r) dr = 1$$

Where *r* represents three-dimensional space coordinates, then:

$$\sum_{a} C_{a,i}^{2} + 2 \times \sum_{a} \sum_{b > a} C_{a,i} C_{b,i} S_{a,b} = 1$$

Thereinto:

$$S_{ab} = \int \chi_a(r) \chi_b(r) dr_{.}$$

The first term is treated as the sum of the independent contributions of the individual basis functions to the orbit which is called the localized term. The second term is the cross term, which embodies the joint contribution to the orbitals due to the coupling between the basis functions which satisfy the condition $S_{a,b} = \delta_{a,b}$.

References

- Tian Lu, Feiwu Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 2012, 33(5), 580-592.
- Tian Lu, Feiwu Chen, Calculation of molecular orbital composition, *Acta Chim.* Sin., 2011, 69(20), 2393-2406.

Figure S1. Schematic representation of the adiabatic potential energy surfaces for S_1 and T_1 .

Figure S2. The simulated XRPD of chosen structures of 4CNDPDBP-TPA and the designed molecules.

Figure S3. QM/MM models for 4CNDPDBP-TPA and the designed molecules in solid phase. Surrounding molecules are regarded as the low layer and the centered molecule is treated as the high layer

Figure S4. (a) Geometry comparisons and RMSD values of DPDBP-TPA, 2CNDPDBP-TPA and 4CNDPDBP-TPA among S_0 (red), S_1 (blue) and T_1 (green) states. (b) Molecular planarity parameters for DPDBP-TPA, 2CNDPDBP-TPA and 4CNDPDBP-TPA. (c) Calculated reorganization energies *versus* the normal-mode frequencies for DPDBP-TPA, 2CNDPDBP-TPA and 4CNDPDBP-TPA. Representative vibration modes are shown as insets.

Figure S5. The atomic labels and the interesting bond lengths (B₁, B₂, B₃ and B₄), bond angles (θ_1 and θ_2) and the dihedral angles (α_1 and α_2) of 4CNDPDBP-TPA and the designed molecules.

Figure S6. Geometry comparisons and RMSD values of 4CNDPDBP-TPA and the designed molecules (a) in toluene and (b) solid phase among S_0 (red), S_1 (blue) and T_1 (green) states.

Figure S7. Adiabatic excitation energies and involved molecular orbital energies and distributions for 4CNDPDBP-TPA and the designed molecules in toluene.

Figure S8. The localized orbital locator- π (LOL- π) isosurfaces for 4CNDPDBP-TPA and the designed molecules in toluene and solid phase.

Figure S9. NTOs of the S_1 and T_1 states for 4CNDPDBP-TPA and the designed molecules in toluene. The values below the arrows are the LE proportions.

Figure S11. Distributions of holes and electrons as well as heat maps of the S_1 state for 4CNDPDBP-TPA and the designed molecules in toluene (a) and solid phase (b).

Figure S12. Calculated HR factors *versus* the normal-mode frequencies for 4CNDPDBP-TPA and the designed molecules (a) in toluene and (b) solid phase. Representative vibration modes are shown as insets.

Figure S13. Calculated reorganization energies *versus* the normal-mode frequencies for 4CNDPDBP-TPA and the designed molecules in toluene. Representative vibration modes are shown as insets.

Figure S14. Contributions of the reorganization energies from bond lengths (orange), bond angles (green) and dihedral angles (purple) for 4CNDPDBP-TPA and the designed molecules.

Figure S15. Fragment transition dipole moment vector (red) and the whole transition dipole moment vector (green) of 4CNDPDBP-TPA and the designed molecules (a) in toluene and (b) solid phase.

Figure S16. Molecular planarity parameters for 4CNDPDBP-TPA and the designed molecules (a) in toluene and (b) solid phase.

Figure S17. IRI graphical analyses of weak interactions of 4CNDPDBP-TPA and the designed molecules in toluene.

Figure S18. The X component of the transition dipole moment matrix and the sosurface of the X component of the transition dipole moment density (Tx(r)) for 4CNDPDBP-TPA and the designed molecules (a) in toluene and (b) solid phase.

Figure S19. Variations of the ISC and RISC rates with temperature for 4CNDPDBP-TPA and the designed molecules in toluene (a) and solid phase (b).

Table S1. Geometry parameters	s of S_0 , S_1	and T_1 states for	: 4CNDPDBP-TPA in
toluene as well as their different	aces (Δ). (B	ond length: Å. B	ond angle: °. Dihedral
angle: °)			

	Geometry	Atomic number	\mathbf{S}_0	\mathbf{S}_1	T_1	$\Delta S_0\text{-}S_1 $	$\Delta \mathbf{S}_1 - \mathbf{T}_1 $
	B_1	9-10	1.319	1.347	1.332	0.028	0.015
Pond longth	B_2	7-8	1.319	1.343	1.356	0.024	0.013
Bond length	B_3	8-9	1.439	1.409	1.419	0.030	0.010
	B ₄	3-4	1.375	1.391	1.386	0.016	0.005
Dond angle	θ_1	38-39-40	118.4	119.6	118.4	1.2	1.2
Bond angle	θ_2	68-50-72	119.2	120.3	120.2	1.1	0.1
Dihadral angla	α_1	41-35-21-20	37.09	35.86	21.96	1.23	13.9
	α_2	42-36-16-17	-36.42	-37.38	-37.26	0.96	0.12

Table S2. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-TPA in solid phase as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	S_0	S ₁	T_1	$\Delta S_0\text{-}S_1 $	$\Delta S_1\text{-}T_1 $
	B_1	9-10	1.321	1.343	1.350	0.022	0.007
Bond length	B_2	7-8	1.318	1.345	1.337	0.027	0.008
	B_3	8-9	1.441	1.405	1.410	0.036	0.005
	B ₄	3-4	1.377	1.390	1.395	0.013	0.005

	θ_1	38-39-40	118.8	118.8	118.8	0	0
Bond angle	θ_2	68-50-72	118.9	118.7	118.8	0.2	0.1
Dihadralarala	α_1	41-35-21-20	37.64	37.35	37.82	0.29	0.47
Dinedral angle	α_2	42-36-16-17	-39.26	-44.16	-36.66	4.90	7.50

Table S3. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-NDPA-1 in toluene as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	\mathbf{S}_0	S_1	T_1	$\Delta S_0 - S_1 $	$\Delta S_1 - T_1 $
	B_1	7-8	1.319	1.347	1.332	0.028	0.015
Dand langth	B_2	9-10	1.319	1.343	1.356	0.024	0.013
Bond length	B_3	8-9	1.439	1.409	1.419	0.030	0.010
	B4	1-2	1.375	1.391	1.386	0.016	0.005
Dand anala	θ_1	48-118-120	119.7	117.8	118.5	1.9	0.7
Bond angle	θ_2	43-44-45	118.4	119.6	118.5	1.2	1.1
Dihadral anala	α_1	42-36-16-17	-36.88	-35.52	-22.94	1.36	12.58
	α_2	41-35-21-20	36.68	38.09	37.69	1.41	0.40

Table S4. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-NDPA-1 in solid phase as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	S_0	S_1	T_1	$\Delta S_0 - S_1 $	$\Delta S_1\text{-}T_1 $
Bond length	B_1	7-8	1.317	1.347	1.340	0.030	0.007
	B_2	9-10	1.321	1.338	1.350	0.017	0.012
	B_3	8-9	1.442	1.407	1.410	0.035	0.003
	B_4	1-2	1.377	1.394	1.390	0.017	0.004
Dond angle	θ_1	48-118-120	120.0	118.2	118.4	1.8	0.2
Bond angle	θ_2	43-44-45	118.6	120.2	119.3	1.6	0.9
Dihedral angle	α_1	42-36-16-17	-39.93	-44.75	-37.02	4.82	7.73
	α_2	41-35-21-20	35.79	36.25	36.66	0.46	0.41

Table S5. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-DBPPA in toluene as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	\mathbf{S}_0	\mathbf{S}_1	T_1	$\Delta \mathbf{S}_0 \textbf{-} \mathbf{S}_1 $	$\Delta S_1 - T_1 $
Bond length	B_1	9-10	1.319	1.346	1.334	0.027	0.012
	B_2	7-8	1.319	1.344	1.354	0.025	0.010
	B_3	8-9	1.439	1.410	1.418	0.029	0.008
	B ₄	3-4	1.375	1.391	1.387	0.016	0.004

Bond angle	θ_1	38-39-40	118.5	120.0	118.7	1.5	1.3
	θ_2	12-13-14	120.0	119.2	119.3	0.8	0.1
Dihedral angle	α_1	42-36-16-17	-36.70	-37.94	-38.15	1.24	0.21
	α_2	41-35-21-20	37.36	37.40	23.93	0.04	13.47

Table S6. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-DBPPA in solid phase as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	S_0	S_1	T_1	$\Delta \mathbf{S}_0 \textbf{-} \mathbf{S}_1 $	$\Delta S_1 - T_1 $
Bond length	B_1	9-10	1.320	1.340	1.346	0.020	0.006
	B_2	7-8	1.320	1.350	1.345	0.030	0.005
	B_3	8-9	1.443	1.406	1.408	0.037	0.002
	B_4	3-4	1.376	1.387	1.391	0.011	0.004
Dand anala	θ_1	38-39-40	117.9	118.0	118.0	0.1	0
Bond angle	θ_2	12-13-14	120.3	120.0	119.9	0.3	0.1
Dihadral anala	α_1	42-36-16-17	-33.00	-39.19	-34.38	6.19	4.81
	α_2	41-35-21-20	37.76	39.36	39.45	1.6	0.09

Table S7. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-NDPA-2 in toluene as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	S_0	S_1	T_1	$\Delta S_0 - S_1 $	$\Delta S_1 - T_1 $
	\mathbf{B}_1	7-8	1.319	1.346	1.335	0.027	0.011
Dand langth	B_2	9-10	1.319	1.343	1.352	0.024	0.009
Bond length	B_3	8-9	1.444	1.414	1.421	0.030	0.007
	B_4	48-114	1.415	1.392	1.410	0.023	0.018
Dond angle	θ_1	43-44-45	118.6	120.1	119.0	1.5	1.1
Bond angle	θ_2	51-50-55	119.1	120.3	120.2	1.2	0.1
Dihedral angle	α_1	42-36-16-17	-47.63	-48.59	-35.81	0.96	12.78
	α_2	41-35-21-20	35.50	37.73	36.89	2.23	0.84

Table S8. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-NDPA-2 in solid phase as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	\mathbf{S}_0	S_1	T_1	$\Delta S_0\text{-}S_1 $	$\Delta S_1\text{-}T_1 $
	B_1	7-8	1.319	1.339	1.342	0.020	0.003
Bond length	B_2	9-10	1.319	1.347	1.346	0.028	0.001
	B_3	8-9	1.448	1.410	1.342	0.038	0.068
	B ₄	48-114	1.415	1.407	1.407	0.008	0

	θ_1	43-44-45	118.5	118.7	118.7	0.2	0
Bond angle	θ_2	51-50-55	119.0	118.9	118.9	0.1	0
Dihadralarala	α_1	42-36-16-17	-35.70	-39.26	-39.35	3.56	0.09
Diffeoral angle	α_2	41-35-21-20	30.00	33.80	30.68	3.80	3.12

Table S9. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-tBUTPA in toluene as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry Atomic number		S_0	S_1	T_1	$\Delta \mathbf{S}_0 \textbf{-} \mathbf{S}_1 $	$\Delta \mathbf{S}_1 - \mathbf{T}_1 $
Bond length	B_1	9-10	1.319	1.347	1.333	0.028	0.014
	B_2	7-8	1.319	1.343	1.354	0.024	0.011
	B_3	8-9	1.440	1.409	1.420	0.031	0.011
	B_4	3-4	1.375	1.391	1.420	0.016	0.029
Dond angle	θ_1	38-39-40	118.2	120.6	118.3	2.4	2.3
Bond angle	θ_2	68-50-72	118.5	119.3	119.5	0.8	0.2
Dihedral angle	α_1	42-36-16-17	-36.58	-37.83	-42.35	1.25	4.52
	α_2	41-35-21-20	35.87	38.53	17.25	2.66	21.28

Table S10. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-tBUTPA in solid phase as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry Atomic number		S_0	S_1	T_1	$\Delta S_0 - S_1 $	$\Delta S_1 - T_1 $
Bond length	\mathbf{B}_1	9-10	1.321	1.341	1.347	0.020	0.006
	B_2	7-8	1.374	1.347	1.341	0.027	0.006
	B_3	8-9	1.443	1.406	1.408	0.037	0.002
	B ₄	3-4	1.374	1.383	1.388	0.009	0.005
Dond angle	θ_1	38-39-40	117.6	117.5	117.5	0.1	0
Bond angle	θ_2	68-50-72	118.7	118.5	118.5	0.2	0
Dihedral angle	α_1	42-36-16-17	-33.99	-41.09	-37.11	7.10	3.98
	α_2	41-35-21-20	35.01	35.73	35.52	0.72	0.21

Table S11. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-DPAC in toluene as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	Atomic number	S_0	S_1	T_1	$\Delta S_0 - S_1 $	$\Delta S_1\text{-}T_1 $
	\mathbf{B}_1	7-8	1.319	1.346	1.347	0.027	0.001
Dond lon oth	B_2	9-10	1.319	1.341	1.340	0.022	0.001
Bond length	B_3	8-9	1.436	1.411	1.411	0.025	0
	B ₄	57-58	1.400	1.377	1.377	0.023	0

Bond angle	θ_1	57-63-95	121.7	119.7	119.7	2.0	0
	θ_2	57-58-61	121.6	119.8	119.9	1.8	-0.1
D'1 - 1-1 1-	α_1	58-57-21-20	96.30	93.95	97.49	2.35	-3.54
Diffeoral angle	α_2	107-101-16-17	-97.93	-97.96	-97.90	0.03	-0.06

Table S12. Geometry parameters of S_0 , S_1 and T_1 states for 4CNDPDBP-DPAC in solid phase as well as their differences (Δ). (Bond length: Å. Bond angle: °. Dihedral angle: °)

	Geometry	eometry Atomic number		S_1	T_1	$\Delta S_0\text{-}S_1 $	$\Delta S_1\text{-}T_1 $
Bond length	B_1	7-8	1.319	1.345	1.345	0.026	0
	B_2	9-10	1.320	1.346	1.346	0.026	0
	B_3	8-9	1.440	1.406	1.406	0.034	0
	B_4	57-58	1.400	1.398	1.398	0.002	0
Dand angle	θ_1	57-63-95	121.3	121.3	121.3	0	0
Bond angle	θ_2	57-58-61	121.4	121.4	121.4	0	0
Dihedral angle	α_1	58-57-21-20	92.83	95.15	95.11	2.32	0.04
	α_2	107-101-16-17	-100.8	-94.40	-94.86	6.40	0.46

			Reorganization e	energies (meV)	
	-	Low frequency	Middle frequency	High frequency	Total
	4CNDPDBP-TPA	46.0	53.1	28.1	127.2
	4CNDPDBP-NDPA-1	60.2	56.5	29.6	146.3
Taluana	4CNDPDBP-DBPPA	53.5	55.3	30.8	139.6
Toluene	4CNDPDBP-NDPA-2	64.1	61.5	34.3	159.9
	4CNDPDBP-tBUTPA	60.0	58.4	31.0	149.4
	4CNDPDBP-DPAC	98.1	77.7	42.5	218.3
	4CNDPDBP-TPA	58.1	56.9	26.8	141.8
	4CNDPDBP-NDPA-1	62.9	102.3	30.3	195.5
C -1: 1	4CNDPDBP-DBPPA	154.5	71.0	38.8	264.3
Solid	4CNDPDBP-NDPA-2	72.8	74.1	43.9	190.8
	4CNDPDBP-tBUTPA	332.9	77.0	43.8	453.7
	4CNDPDBP-DPAC	80.5	88.0	47.5	216.0

Table S13. Reorganization energies (meV) for 4CNDPDBP-TPA and the designed molecules in toluene and solid phase contributed from low frequency regions ($<500 \text{ cm}^{-1}$), middle frequency regions ($>1500 \text{ cm}^{-1}$) and high frequency regions ($>1500 \text{ cm}^{-1}$).

Transition dipole moment							
	Fragment	v	V	7	Total		
	Pragment	Λ	1	L	(Debye)		
	1	-0.0096	-0.0062	0.0007	0.0291		
4CNDPDBP-TPA	2	1.0933	-0.1100	-0.0079	2.7929		
	3	1.0493	0.9479	-0.0023	3.5941		
	All	2.1330	0.8316	-0.0095	5.8190		
	1	-1.0102	-0.9763	0.0240	3.5713		
4CNDPDBP-NDPA-1	2	-1.2275	0.1198	0.0069	3.1348		
	3	0.0148	0.0002	-0.0003	0.0376		
	All	-2.2229	-0.8563	0.0306	6.0552		
	1	-0.0245	-0.0148	0.0017	0.0729		
4CNDPDBP-DBPPA	2	1.1650	0.1980	-0.0136	3.0037		
	3	0.8005	-0.8263	0.0390	2.9258		
	All	1.9409	-0.6431	0.0271	5.1974		
	1	-0.0118	-0.0334	0.0013	0.0901		
4CNDPDBP-NDPA-2	2	-0.9497	-0.0717	-0.0029	2.4207		
	3	-0.8311	0.5784	0.0702	2.5798		
	All	-1.7925	0.4733	0.0685	4.7154		
	1	-0.0271	-0.02334	0.0004	0.0909		
	2	1.1465	0.1544	-0.0125	2.9405		
4CNDPDBP-IBUTPA	3	0.7975	-0.8671	0.0078	2.9944		
	All	1.9169	-0.7360	-0.0043	5.2190		
	1	-0.0001	-0.0002	-0.0002	0.0008		
	2	-0.0532	-0.0067	0.0005	0.1363		
4UNDFDDF-DFAU	3	-0.0396	0.0465	-0.0170	0.1611		
	All	-0.0929	0.0396	-0.0167	0.2602		

Table S14. Transition dipole moment vector contributions from fragment 1, fragment 2 and fragment 3 of 4CNDPDBP-TPA and the designed molecules in toluene.

Table S15. Transition dipole moment vector contributions from fragment 1, fragment 2 and fragment 3 of 4CNDPDBP-TPA and the designed molecules in solid phase.

Transition dipole moment									
	Fragment	Х	Y	Z	Total (Debye)				
	1	0.8633	-0.7510	0.0088	2.9084				
4CNDPDBP-TPA	2	0.7682	0.0579	-0.0107	1.9583				
	3	-0.0815	-0.0611	-0.0012	0.2589				
	All	1.5499	-0.7542	-0.0032	4.3810				
	1	-0.7351	-0.6917	0.0247	2.5663				
4CNDPDDP-NDPA-1	2	-0.7912	0.1141	0.0110	2.0320				
	3	0.0545	-0.0385	-0.0056	0.1702				

	All	-1.4718	-0.6161	0.0301	4.0561
	1	-0.5642	-0.8220	0.0420	2.5363
4CNDPDBP-DBPPA	2	-0.9076	0.0082	0.0169	2.3073
	3	0.0693	-0.0640	0.0115	0.2415
	All	-1.4025	-0.8778	0.0704	4.2092
	1	0.5451	0.3852	-0.0267	1.6979
4CNDPDBP-NDPA-2	2	0.5474	-0.0670	-0.0009	1.4017
	3	0.0030	-0.0294	0.0050	0.0762
	All	1.0956	0.2888	-0.0226	2.8804
	1	-0.5632	-0.8042	0.0453	2.4981
	2	-0.8325	0.0179	-0.0055	2.1165
4CNDPDBP-IBUTPA	3	0.0652	-0.0567	0.0049	0.2200
	All	-1.3305	-0.8430	0.0447	4.0050
	1	0.0520	-0.0555	-0.0166	0.1979
	2	0.0604	0.0141	-0.0007	0.1577
4CINDEDBE-DEAC	3	-0.0007	-0.0006	0.0000	0.0023
	All	0.1117	-0.0420	-0.0174	0.3065

Table S16. Intermolecular interaction energy analyses for selected dimers extracted from the solid phase of 4CNDPDBP-TPA. (Unit: kJ mol⁻¹).

		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	-16.65	60.79	-137.78	-93.64 kJ/mol
	Dimer-2	-7.28	32.47	-54.31	-29.12 kJ/mol
4CNDPDBP-TPA	Dimer-3	-17.49	27.41	-36.23	-26.31 kJ/mol
	Dimer-4	-31.67	141.13	-223.76	-114.3 kJ/mol
	Dimer-5	-0.42	8.70	-21.46	-13.18 kJ/mol

Table S17. Intermolecular interaction energy analyses for selected dimers extracted from the solid phase of 4CNDPDBP-NDPA-1. (Unit: kJ mol⁻¹).

		Electrostatic	Repulsion	Dispersion	Total
	Dimer-1	-10.38	65.35	-140.75	-85.78 kJ/mol
	Dimer-2	-0.79	25.61	-41.80	-16.98 kJ/mol
4CNDPDBP-NDPA-1	Dimer-3	-3.51	12.47	-17.24	-8.28 kJ/mol
	Dimer-4	-31.42	122.72	-195.69	-104.39 kJ/mol
	Dimer-5	-4.90	14.73	-18.49	-8.66 kJ/mol

		Electrostatic	Repulsion	Dispersion	Total	
	Dimer-1	-10.37	35.96	-56.79	-31.20 kJ/mol	
	Dimer-2	-7.61	28.37	-37.57	-16.81 kJ/mol	
4CNDPDBP-DBPPA	Dimer-3	-38.66	133.13	-222.21	-127.74 kJ/mol	
	Dimer-4	-3.18	10.21	-14.81	-7.78 kJ/mol	
	Dimer-5	-6.28	19.62	-34.23	-20.89 kJ/mol	

Table S18. Intermolecular interaction energy analyses for selected dimers extracted from the solid phase of 4CNDPDBP-DBPPA. (Unit: kJ mol⁻¹).

Table S19. Intermolecular interaction energy analyses for selected dimers extracted from the solid phase of 4CNDPDBP-NDPA-2. (Unit: kJ mol⁻¹).

		Electrostatic	Repulsion	Dispersion	Total
4CNDPDBP-NDPA-2	Dimer-1	-31.42	122.72	-195.69	-104.39 kJ/mol
	Dimer-2	-3.51	12.47	-17.24	-8.28 kJ/mol
	Dimer-3	-4.85	14.73	-18.49	-8.61 kJ/mol
	Dimer-4	-10.38	65.35	-140.75	-85.78 kJ/mol
	Dimer-5	-0.79	25.61	-41.80	-16.98 kJ/mol

Table S20. Intermolecular interaction energy analyses for selected dimers extracted from the solid phase of 4CNDPDBP-tBUTPA. (Unit: kJ mol⁻¹).

		Electrostatic	Repulsion	Dispersion	Total
4CNDPDBP-tBUTPA	Dimer-1	-46.32	150.12	-227.86	-124.06 kJ/mol
	Dimer-2	-4.06	0.17	-2.01	-5.90 kJ/mol
	Dimer-3	-57.45	170.71	-255.22	-141.96 kJ/mol
	Dimer-4	-16.90	57.95	-76.57	-35.52 kJ/mol
	Dimer-5	-11.88	43.64	-62.01	-30.25 kJ/mol

Table S21. Intermolecular interaction energy analyses for selected dimers extracted
from the solid phase of 4CNDPDBP-DPAC. (Unit: kJ mol ⁻¹).

		Electrostatic	Repulsion	Dispersion	Total
4CNDPDBP-DPAC	Dimer-1	-15.10	63.60	-111.04	-62.54 kJ/mol
	Dimer-2	-6.65	22.55	-35.94	-20.04 kJ/mol

 Dimer-3	-21.97	71.42	-117.53	-68.08 kJ/mol
Dimer-4	-5.82	19.83	-32.68	-18.67 kJ/mol
Dimer-5	-5.86	38.95	-64.06	-30.97 kJ/mol