Sb³⁺/Mn²⁺ co-doped lead-free Cs₂KYCl₆ perovskites for white light-emitting diodes

Muhammad^a, Zengce Liu^a, Junchun Li^a, Yuanyuan Sheng^a, Yajing Chang^b, Ping Chen^{a,c*}, and Yang Jiang^{a*}

- a. School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
- b. State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, China
- c. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China

* Corresponding Authors

Yang Jiang, Chen Ping

E-mail: apjiang@hfut.edu.cn ; chenp@hfut.edu.cn

Fig.S1 Calculated band gaps for (a) Pristine $Cs_2KYCl_6 MCs$ (b) Sb^{3+} -doped Cs_2KYCl_6 (c) and Sb^{3+}/Mn^{2+} co-doped $Cs_2KYCl_6 MCs$.

Fig. S2 (a) SEM image (b-f) mapping images of Sb^{3+} -doped Cs_2KYCl_6 (g) EDX spectrum.

Fig. S4 (a) Normalized PLE spectra of 3% Sb³⁺ single-doped Cs₂KYCl₆ under different emission wavelengths (460 nm, 490 nm, 510 nm, 515 nm, 520 nm, and 540 nm). (b) PL spectra of Cs₂KYCl₆:3% Sb³⁺.

Fig. S5 PLQY of 3% Sb^{3+} single-doped Cs_2KYCl_6 MCs.

Fig. S6 PLQY spectra of 3% Sb^{3+/3.5%} Mn^{2+} co-doped Cs₂KYCl₆ MCs.

Fig. S7 Time-resolved PL spectra of 3% Sb³⁺ single-doped Cs₂KYCl₆ MCs excited at 340 nm.

Fig. S8 (a) Temperature-dependent PL of Sb³⁺ single-doped MCs excited at 340 nm. (b) 2D color map of Sb³⁺ single-doped MCs. (c) PL peak positions and FWHM at corresponding temperatures.

Fig.S9 (a) Thin film of optimal Sb³⁺/Mn²⁺ co-doped MCs under 317 nm UV radiation (b) PL spectra (c) and PLQY.

Fig.S10 (a) PL spectra of Sb³⁺/Mn²⁺ co-doped Cs₂KYCl₆ (fresh and after exposure in the air for 20 days) and (b) XRD after 20 days exposure in the air (c) Normalized PL intensities under continuous light irradiation for 60 h and the insets are photos of pre-and post-test. (d) XRD patterns of the fresh and consecutive 360 h exposure to UV light illumination.

Sites	Formation Energy (eV) Sb ³⁺ Defects	Formation Energy (eV) Mn ²⁺ Defects
Cs ³⁺	8.929178 eV	-4.9865 eV
K ⁺	8.929178 eV	5.015505 eV
Y ³⁺	- 8.931178 eV	-11.6613 eV
Cŀ	23.87503 eV	90.10 eV
Interstitial	18.44202 eV	68.92 eV

Table. S1 Formation energies of Sb^{3+} and Mn^{2+} defects in Cs_2KYCl_6

							Table.	S2
-	Elements	Cs	K	Y	Cl	Sb	Atomic	
	Atomic (%)	21.33	8.52	10.08	59.50	0.56	percentages	of

3% Sb³⁺ single-doped Cs₂KYCl₆ MCs

Table. S3 Atomic percentages of 3% Sb³⁺ and 3.5% Mn²⁺ co-doped Cs₂KYCl₆ MCs.

Elements	Cs	K	Y	Cl	Sb	Mn
Atomic (%)	20.42	4.64	8.06	57.65	2.41	6.82

Table. S4 The average lifetime of 3% Sb³⁺ single-doped Cs₂KYCl₆ MCs at 540 nm excited under 340 nm

t ₁ (μs)	$t_2 (\mu s)$	A1	A2	$\tau_{ave}(\mu s)$
0.42	4.91	408.166	760.191	4.72

Table. S5 The average lifetime of 3% Sb³⁺ and 3.5% Mn²⁺ co-doped Cs₂KYCl₆MCs monitored at 540 nm and 590 nm.

Emission (nm)	$t_1 (\mu s)$	$t_2 (\mu s)$	A1	A2	$\tau_{ave}\left(\mu s\right)$
540	0.296	4.53	477.13	548.16	4.30
590	0.383	4.929	427.39	382.93	4.57

Components	CIE	CRI	CCT	Ref
$Cs_2NaYCl_6: 3\%Sb^{3+}/4\%Mn^{2+}$	(0.34, 0.31)	81.2	5410	1
$Cs_2SnCl_6:0.59\%Sb^{3+}$	(0.30, 0.37)	81	6815	2
$Cs_2Ag_{0.4}Na_{0.6}InCl_{6:}Bi_3^+/Gd^{3+}$	(0.34, 0.33)	93.9	4818	3
$Cs_2NaYCl_6:1\%Sb^{3+}(Eu^{3+}/Tb^{3+})$	(0.32, 0.33)	80.3	/	4
Cs ₂ AgIn _{0.9} Bi _{0.1} Cl ₆	(0.32, 0.32)	94.5	6432	5
$MA_4In0.9Sb_{0.1}Cl_7$	(0.39, 0.36)	91	3483	6
$Cs_2KYCl_6:3\%Sb^{3+}/3.5\%Mn^{2+}$	(0.34, 0.41)	85.4	5062	This work

Table. S6. Typical optical features of different lead-free halides WLEDs.

References

- 1. S. Bai, H. Liang, C. Li, C. Tang, G. Yang, X. Xu, X. Yang, G. Pan and Y. Zhu, *Ceramics International*, 2023, **49**, 1102-1107.
- 2. J. Li, Z. Tan, M. Hu, C. Chen, J. Luo, S. Li, L. Gao, Z. Xiao, G. Niu and J. Tang, *Frontiers of Optoelectronics*, 2019, **12**, 352-364.
- 3. C.-Y. Wang, P. Liang, R.-J. Xie, Y. Yao, P. Liu, Y. Yang, J. Hu, L. Shao, X. W. Sun, F. Kang and G. Wei, *Chemistry of Materials*, 2020, **32**, 7814-7821.
- 4. Y. Wang, S. Bai, H. Liang, C. Li, T. Tan, G. Yang and J. Wang, *Journal of Alloys and Compounds*, 2023, **934**, 167952.
- 5. Y. Zhang, Z. Zhang, W. Yu, Y. He, Z. Chen, L. Xiao, J.-j. Shi, X. Guo, S. Wang and B. Qu, *Advance Science*, 2022, **9**, 2102895.
- D. Liang, X. Liu, B. Luo, Q. Qian, W. Cai, S. Zhao, J. Chen and Z. Zang, *EcoMat*, 2023, 5, e12296.