Supporting Information

Suppression of Ion Migration in Lead-free Zero-dimensional Perovskite FA₃BiBr₆Single Crystals for X-ray Detection

Kangyu Ji,^a Wenjun Wang,^{*b} Yuanbo Ma,^c Zihan Wang,^c Xuepeng Liu,^a Jiajiu Ye,^c Shu Zhang,^{*d} Xu Pan, ^{*c} Songyuan Dai^{*a} ^aSchool of New Energy, North China Electric Power University, Beijing 102206, China. E-mail: sydai@ncepu.edu.cn ^bDepartment of Microelectronics, Institute of Science, Hubei University of Technology, Wuhan 430068, China ^cChinese Acad Sci, Inst Solid State Phys, Hefei Inst Phys Sci, Hefei 230031, Peoples R China ^dQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 P.R. China

Figure S1. Single crystal ground into powder detection EDS.

Figure S2. The solubility curve of FA_3BiBr_6 SC powder in GBL solvent.

Figure S3. FA₃BiBr₆ crystals growth at 75 °C and crystals after vacuum drying.

Figure S4. (a) Photograph of FA_3BiBr_6 PSCs dried directly without washing and (b) 80X magnification of the surface of PSCs under a microscope. (c) Photograph of FA_3BiBr_6 PSCs dried after cleaning with GBL and (d) 80X magnification of the surface of PSCs under microscope

Figure S5. PXRD pattern of FA_3BiBr_6 placed in 65% humidity and dry environment for 45 days.

Figure S6. TG, DTG and DTA data for FA_3BiBr_6 (TG = thermogravimetric analysis (mass loss vs. temperature) plot, DTG = thermogravimetric analysis first order derivative, DTA = free carrier stat).

Figure S7. Schematic of the energy level structure of STE (FC = free carrier state, FE = free exciton state, STE = self-trapped exciton state, GS = ground state).

Figure S7 illustrates the emission process of the two types of excitons. The excitons are initially excited to the conduction band and subsequently relax at the edge of the conduction band. At this point, the excitons are in the free exciton state (FE). When the excitation energy surpasses E_g of 2.75 eV in FA₃BiBr₆, the free exciton pairs consisting of holes and electrons overcome the binding energy $(E_{\rm b})$ restriction of excitons. The energy levels of these carriers are situated in the free-carrier state (FC). The emission of free excitons (FEs) involves a direct transition from the free exciton state to the ground state (GS), as indicated by the red arrow in Figure 4c. However, the presence of electron-phonon coupling leads to the loss of energy by high-level FEs, causing their transformation into low-level STEs. This energy loss is referred to as self-trapping energy (E_{st}) .¹ Additionally, the energy of the ground state is influenced by lattice deformation, resulting in an increase known as lattice deformation energy (E_d) . Emission of STEs from different states of STE to different states of GS was affected by E_{st} and E_{d} , as illustrated by the blue arrows in Figure S7. This phenomenon also accounts for the broad-spectrum emission of STEs and the large Stokes shift observed in FA₃BiBr₆. The emission energy (E_{PL}) can be calculated using the equation $E_{PL} = E_g - E_b - E_{st} - E_d$.

	1				
Element	Арр	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
Br L	12.87	0.9312	69.86	1.02	85.84
Bi M	3.71	0.6229	30.14	1.02	14.16
Totals			100		

 Table S1. EDS test report

Formula weight823.65Temperature/K300.00Crystal systemtetragonalSpace group $P4_2/m$ $a/Å$ 10.3603(6) $b/Å$ 10.3603(6) $c/Å$ 9.0922(6) a'^o 90 β'^o 90 β'^o 90 β'^o 90 γ'^o 90 γ'^o 90 ∇ lume/Å ³ 975.92(13)Z2 $\rho_{cak}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm ³ 0.26 × 0.23 × 0.17RadiationMoKα ($\lambda = 0.71073$)2 θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [I] ≥ 2σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Empirical formula	C ₃ H ₁₅ BiBr ₆ N ₆
Temperature/K300.00Crystal systemtetragonalSpace group $P4_{/m}$ $a/Å$ 10.3603(6) $b/Å$ 10.3603(6) $b/Å$ 10.3603(6) $c/Å$ 9.0922(6) a'° 90 β'° 90 γ'° 90 γ'° 90Volume/Å3975.92(13)Z2 $\rho_{cak}g/cm^3$ 2.803 $\mu'mm^{-1}$ 21.305F(000)736.0Crystal size/mm ³ 0.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$)2 θ range for data collection/°5.56 ~ 61.054Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Formula weight	823.65
Crystal systemtetragonalSpace group $P4_2/m$ $a/Å$ $10.3603(6)$ $b/Å$ $10.3603(6)$ $b/Å$ $10.3603(6)$ $c/Å$ $9.0922(6)$ a'^o 90 $\beta/^o$ 90 $\beta/^o$ 90 γ/o 90 γ/o 90 Volume/Å3 $975.92(13)$ Z 2 $\rho_{cate}g/cm^3$ 2.803 μ/mm^{-1} 21.305 F(000) 736.0 Crystal size/mm ³ $0.26 \times 0.23 \times 0.17$ Radiation $MoK\alpha (\lambda = 0.71073)$ 2θ range for data collection/o $5.56 \sim 61.054$ Index ranges $-13 \le h \le 14, -14 \le h \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F ² 1.035 Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Temperature/K	300.00
Space group $P4_2/m$ $a/Å$ $10.3603(6)$ $b/Å$ $10.3603(6)$ $b/Å$ $10.3603(6)$ $c/Å$ $9.0922(6)$ $a/°$ 90 $p/°$ 90 $p/°$ 90 $\gamma/°$ 90 $\gamma/°$ 90 Volume/ų $975.92(13)$ Z 2 $p_{catc}g/cm³$ 2.803 μ/mm^{-1} 21.305 $F(000)$ 736.0 Crystal size/mm³ $0.26 \times 0.23 \times 0.17$ Radiation $MoK\alpha (\lambda = 0.71073)$ 2θ range for data collection/° $5.56 \sim 61.054$ Index ranges $-13 \le h \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F² 1.035 Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Crystal system	tetragonal
a/Å10.3603(6)b/Å10.3603(6)c/Å9.0922(6)a/°90 β /°90 β /°90 γ /°90Volume/ų975.92(13)Z2 $\rho_{cak}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm³0.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$)2 θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F²1.035Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Space group	P4 ₂ /m
b/Å10.3603(6)c/Å9.0922(6) a'° 90 β'° 90 β'° 90 γ'° 90Volume/Å ³ 975.92(13)Z2 $\rho_{calc}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm ³ 0.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$) 2θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [I ≥ 2σ (I)] $R_1 = 0.0945, wR_2 = 0.1152$	a/Å	10.3603(6)
c/Å9.0922(6) $a/^{\circ}$ 90 $\beta/^{\circ}$ 90 $\gamma/^{\circ}$ 90 $\gamma/^{\circ}$ 90Volume/Å^3975.92(13)Z2 $\rho_{catc}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm^30.26 × 0.23 × 0.17RadiationMoKa ($\lambda = 0.71073$) 2θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	b/Å	10.3603(6)
$a/^{\circ}$ 90 $\beta/^{\circ}$ 90 $\gamma/^{\circ}$ 90Volume/Å ³ 975.92(13) Z 2 $p_{eak}g/cm^{3}$ 2.803 μ/mm^{-1} 21.305 $F(000)$ 736.0Crystal size/mm ³ 0.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$) 2θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	c/Å	9.0922(6)
$\beta/^{\circ}$ 90 $\gamma/^{\circ}$ 90Volume/Å ³ 975.92(13) Z 2 $\rho_{catc}g/cm^{3}$ 2.803 μ/mm^{-1} 21.305 $F(000)$ 736.0Crystal size/mm ³ 0.26 × 0.23 × 0.17RadiationMoKa ($\lambda = 0.71073$) 2θ range for data collection/°5.56 ~ 61.054Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0945, wR_2 = 0.1152$	a/o	90
$\gamma/^{\circ}$ 90Volume/ų975.92(13)Z2 $\rho_{calc}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm³0.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$) 2θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F²1.035Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	β/°	90
Volume/ų975.92(13)Z2 $p_{calc}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm³0.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$)2 θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F²1.035Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0945, wR_2 = 0.1152$	γ/ ^o	90
Z2 $\rho_{calc}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm^30.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$)2 θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Volume/Å ³	975.92(13)
$\rho_{calc}g/cm^3$ 2.803 μ/mm^{-1} 21.305F(000)736.0Crystal size/mm^30.26 × 0.23 × 0.17RadiationMoK α ($\lambda = 0.71073$)2 θ range for data collection/°5.56 ~ 61.054Index ranges-13 ≤ h ≤ 14, -14 ≤ k ≤ 14, -12 ≤ 1 ≤ 12Reflections collected27474Independent reflections1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$]Data/restraints/parameters1577/64/76Goodness-of-fit on F ² 1.035Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Z	2
μ /mm ⁻¹ 21.305F(000)736.0Crystal size/mm ³ $0.26 \times 0.23 \times 0.17$ RadiationMoKa ($\lambda = 0.71073$) 2θ range for data collection/° $5.56 \sim 61.054$ Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F ² 1.035 Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	$ ho_{calc}g/cm^3$	2.803
F(00)736.0Crystal size/mm³ $0.26 \times 0.23 \times 0.17$ Radiation $MoK\alpha (\lambda = 0.71073)$ 2θ range for data collection/° $5.56 \sim 61.054$ Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F² 1.035 Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	µ/mm ⁻¹	21.305
Crystal size/mm³ $0.26 \times 0.23 \times 0.17$ RadiationMoKa ($\lambda = 0.71073$) 2θ range for data collection/° $5.56 \sim 61.054$ Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F² 1.035 Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	F(000)	736.0
RadiationMoK α ($\lambda = 0.71073$) 2θ range for data collection/° $5.56 \sim 61.054$ Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F ² 1.035 Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Crystal size/mm ³	$0.26 \times 0.23 \times 0.17$
2θ range for data collection/° $5.56 \sim 61.054$ Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F ² 1.035 Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Radiation	MoK α ($\lambda = 0.71073$)
Index ranges $-13 \le h \le 14, -14 \le k \le 14, -12 \le 1 \le 12$ Reflections collected 27474 Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F ² 1.035 Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	2 heta range for data collection/°	$5.56 \sim 61.054$
Reflections collected 27474 Independent reflections 1577 [$R_{int} = 0.1223, R_{sigma} = 0.0509$] Data/restraints/parameters 1577/64/76 Goodness-of-fit on F ² 1.035 Final R indexes [I ≥ 2 σ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Index ranges	$-13 \le h \le 14, -14 \le k \le 14, -12 \le l \le 12$
Independent reflections $1577 [R_{int} = 0.1223, R_{sigma} = 0.0509]$ Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F ² 1.035 Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Reflections collected	27474
Data/restraints/parameters $1577/64/76$ Goodness-of-fit on F ² 1.035 Final R indexes [I $\ge 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Independent reflections	1577 [$R_{\text{int}} = 0.1223, R_{\text{sigma}} = 0.0509$]
Goodness-of-fit on F^2 1.035Final R indexes [I $\geq 2\sigma$ (I)] $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Data/restraints/parameters	1577/64/76
Final R indexes $[I \ge 2\sigma (I)]$ $R_1 = 0.0451, wR_2 = 0.0980$ Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Goodness-of-fit on F ²	1.035
Final R indexes [all data] $R_1 = 0.0945, wR_2 = 0.1152$	Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0451, wR_2 = 0.0980$
	Final R indexes [all data]	$R_1 = 0.0945, wR_2 = 0.1152$
Largest diff. peak/hole / e Å ⁻³ 0.75/-0.93	Largest diff. peak/hole / e Å ⁻³	0.75/-0.93

Table S2. Crystal data and structure refinement for FA_3BiBr_6

Tuble Set Set		ingene for ragbib	6		
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Bi1	Br1	2.8387(12)	Bi1	$Br2^1$	2.8517(8)
Bi1	$Br1^1$	2.8388(12)	N1	C1	1.386(10)
Bi1	Br2 ²	2.8517(8)	N2	C1	1.334(10)
Bi1	Br2 ³	2.8517(8)	N3	C2	1.4000(11)
Bi1	Br2	2.8517(8)	N4	C2	1.351(10)

Table S3. Selected bond lengths for FA_3BiBr_6

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Br1	Bi1	$Br1^1$	180.0	Br2 ³	Bi1	Br2 ²	180.00(3)
Br1	Bi1	$Br2^2$	89.14(3)	$Br2^2$	Bi1	Br2	89.23(5)
Br1 ¹	Bi1	Br2	89.14(3)	$Br2^1$	Bi1	Br2 ²	90.77(5)
Br1 ¹	Bi1	Br2 ³	89.14(3)	Br2 ³	Bi1	Br2	90.77(5)
Br1 ¹	Bi1	$Br2^1$	90.86(3)	$Br2^1$	Bi1	Br2	180.0
Br1	Bi1	Br2	90.86(3)	$Br2^1$	Bi1	Br2 ³	89.23(5)
Br1	Bi1	Br2 ³	90.86(3)	N2	C1	N1	119(2)

Table S4. Selected bond angles (deg) for FA₃BiBr₆

Materials	Dimension	Applied Electric Field (V cm ⁻¹)	Dark Current Drift (nA cm ⁻¹ s ⁻¹ V ⁻¹)	Device Type	Reference
MAPbI ₃ single crystal	3D	100	1.4×10 ⁻⁴	vertical	2
CsPbBr ₃ single crystal	3D	2000	1.9×10 ⁻⁴	vertical	3
MAPbBr ₃ single crystal	3D	20	1.2×10 ⁻³	vertical	4
MAPbBr _{3-n} Cl _n /CsPbBr ₃ Heterojunction	3D	1250	3.92 × 10 ⁻⁴	vertical	5
BiOBr passivated Cs ₂ AgBiBr ₆ film	3D	5000	7.4×10 ⁻⁵	vertical	6
BA2PbI4 /MAPbI3	2D/3D	125	4.84×10^{-5}	vertical	7
(F-PEA) ₂ PbI ₄	2D	1333	$4.9 imes 10^{-8}$	vertical	8
(PEA) ₂ Pbl ₄ single crystal	2D	4545	1.9 ×10 ⁻⁷	planar	9
(PEA) ₂ PbBr ₄ single crystal	2D	4545	6.2 ×10 ⁻⁶	planar	,
δ-FAPbI ₃	1 D	100	3.43 × 10 ⁻⁷	vertical	10
MA ₃ Bi ₂ I ₉	0D	4545	5×10^{-10}	planar	9
Cs ₄ PbBr ₆	0D	6667	5.6×10^{-11}	planar	11
Cs ₃ Bi ₂ I ₉	0D	100	1.67 × 10 ⁻⁸	planar	12
FA3BiBr6	0D	200	3.73×10-7	vertical	This work

Table S5. The dark current drift values of perovskit

G	D: ·	Br-Br Maximum	Br-Br Minimum	DĆ	
Component	Dimension	distance (Å)	distance (Å)	Reference	
FAPbBr ₃	3D	4.2404	4.2404	13	
FA ₃ Bi ₂ Br ₉	2D	5.938	3.889	14	
FA3BiBr6	0D	6.432	4.0533	This work	

Table S6. Perovskite Br-Br spacing in different dimensions

Materials	Dimension	Activation Energy (eV)	Device Type	Reference
MAPbBr ₃	3D	0.062	SC	15
CsPbBr ₃	3D	0.228	SC	16
MAPbBr ₃	3D	0.127	SC	17
MAPbBr ₃	3D	0.25	film	18
Cs ₂ AgBiBr ₃	3D	0.348	SC	17
$Cs_3Bi_2Br_9$	2D	0.15	film	19
[(CH ₃) ₂ NH ₂] ₂ PdBr ₄	2D	0.27	SC	20
$BA_2MA_2Pb_3Br_{10}$	2D	0.052	SC	21
$PEA_2Pb(Br_{0.5}I_{0.5})_4$	2D	0.226	film	
PEA ₂ MA ₅ Pb ₆ (Br _{0.5} I _{0.5}) ₁₉	2D	0.213	film	22
PEA ₂ MA ₉ Pb ₁₀ (Br _{0.5} I _{0.5}) ₃₁	2D	0.17	film	
δ-FAPbI ₃	1D	0.52	wafer	10
Cs ₄ PbI ₆ single crystal	0D	0.32	vertical	23
MA ₃ Bi ₂ I ₉ single crystal	0D	0.46 (in-plane) 0.31 (out-of-plane)	vertical	24
FA ₃ BiBr ₆	0D	0.54	SC	This work

Table S7. The activation energy values of perovskite materials

SC=single crystal

References

1. S. Li, J. Luo, J. Liu and J. Tang, J Phys Chem Lett, 2019, 10, 1999-2007.

2. S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser and M. V. Kovalenko, *Nat. Photonics*, 2016, **10**, 585-589.

3. Y. H. He, L. Matei, H. J. Jung, K. M. McCall, M. Chen, C. C. Stoumpos, Z. F. Liu, J. A. Peters, D. Y. Chung, B. W. Wessels, M. R. Wasielewski, V. P. Dravid, A.

Burger and M. G. Kanatzidis, Nat. Commun., 2018, 9.

4. W. Wei, Y. Zhang, Q. Xu, H. Wei, Y. Fang, Q. Wang, Y. Deng, T. Li, A. Gruverman, L. Cao and J. Huang, *Nat. Photonics*, 2017, **11**, 315-321.

5. F. C. Cui, P. Zhang, L. Z. Zhang, Y. Q. Hua, X. Sun, X. Li, G. D. Zhang and X. T. Tao, *Chem. Mater.*, 2022, DOI: 10.1021/acs.chemmater.2c02266.

6. B. Yang, W. C. Pan, H. D. Wu, G. D. Niu, J. H. Yuan, K. H. Xue, L. X. Yin, X. Y. Du, X. S. Miao, X. Q. Yang, Q. G. Xie and J. Tang, *Nat. Commun.*, 2019, **10**.

7. Y. R. Xiao, C. Z. Xue, X. Wang, Y. C. Liu, Z. Yang and S. Z. Liu, *ACS Appl. Mater. Interfaces*, 2022, **14**, 54867-54875.

8. H. Y. Li, J. M. Song, W. T. Pan, D. R. Xu, W. A. Zhu, H. T. Wei and B. Yang, *Adv. Mater.*, 2020, **32**.

9. Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui, Y. He, H. Ye, K. Zhao, H. Sun, R. Lu, M. Liu, M. G. Kanatzidis and S. Liu, *Matter*, 2020, **3**, 180-196.

Z. H. Wang, S. J. Tie, H. Zhang, C. M. Wan, Z. Liang, H. F. Xu, X. J. Zheng, W.
 H. Zhang, D. Aldakov, P. Reiss, J. J. Ye and X. Pan, *ACS Nano*, 2023, 17, 13638-13647.

11. H. Y. Chen, B. Y. An, G. Q. Peng, S. Wang, Z. H. Li, J. Sun, W. Lan, J. J. Fu, H. X. Wang, L. M. Ding and Z. W. Jin, *Advanced Optical Materials*, 2023, **11**.

12. L. J. Li, G. Ye, T. Y. Luo, X. Y. Chen, G. J. Zhang, H. Wu, L. Yang, W. F. Zhang and H. X. Chang, *J. Phys. Chem. C*, 2022, **126**, 3646-3652.

13. C. Li, E. J. Juarez-Perez and A. Mayoral, *Chem. Commun. (Camb.)*, 2022, **58**, 12164-12167.

14. R. Bhowal, A. A. Balaraman, M. Ghosh, S. Dutta, K. K. Dey and D. Chopra, *J. Am. Chem. Soc.*, 2021, **143**, 1024-1037.

15. V. K. Sharma, R. Mukhopadhyay, A. Mohanty, M. Tyagi, J. P. Embs and D. D. Sarma, *Journal of Physical Chemistry Letters*, 2020, **11**, 9669-9679.

16. M. L. Xia, J. H. Yuan, G. D. Niu, X. Y. Du, L. X. Yin, W. C. Pan, J. J. Luo, Z. G. Li, H. T. Zhao, K. H. Xue, X. S. Miao and J. Tang, *Adv. Funct. Mater.*, 2020, **30**.

17. W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui and J. Tang, *Nat. Photonics*, 2017, **11**, 726-732.

18. L. McGovern, M. H. Futscher, L. A. Muscarella and B. Ehrler, *Journal of Physical Chemistry Letters*, 2020, **11**, 7127-7132.

19. J. H. Xu, J. P. Xu, S. B. Shi, W. H. Bian, J. Chen, Q. L. Zhu, Z. Wang, L. A. Kong, X. S. Zhang and L. Li, *Journal of Physical Chemistry Letters*, 2023, 14, 5318-5327.

20. K. Trabelsi, N. Drissi, F. Hajlaoui, M. Zighrioui, A. Rhaiem, N. Audebrand, T. Roisnel and K. Karim, *Rsc Advances*, 2023, **13**, 23348-23358.

21. H. H. Tsai, D. Ghosh, E. Kinigstein, B. Dryzhakov, H. Driscoll, M. Owczarek, B. Hu, X. Y. Zhang, S. Tretiak and W. Y. Nie, *Nano Lett.*, 2023, **23**, 429-436.

22. J. Cho, P. S. Mathew, J. T. DuBose and P. V. Kamat, Adv. Mater., 2021, 33.

23. Q. Xu, C. Li, J. Nie, Y. Guo, X. Wang, B. H. Zhang and X. P. Ouyang, *Journal of Physical Chemistry Letters*, 2021, **12**, 287-293.

24. X. J. Zheng, W. Zhao, P. Wang, H. R. Tan, M. I. Saidaminov, S. J. Tie, L. G. Chen, Y. F. Peng, J. D. Long and W. H. Zhang, *Journal of Energy Chemistry*, 2020, **49**, 299-306.