Supporting Information

Carbon quantum dots capped with metal ion for efficient optical

optoelectronic applications

Yuanyuan Han, Weihua Li, Jishuai Lin, Haiguang Zhao*, Xiaohan Wang*, Yuanming Zhang*

College of Textiles and Clothes, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, University Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P.R. China

* Corresponding author. College of Textiles and Clothes, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, University Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P.R. China

E-mail address: <u>xh_wang@qdu.edu.cn</u> (*X Wang*), <u>hgzhao@qdu.edu.cn</u> (*H Zhao*) <u>zhangyuanming001@163.com</u> (*Y Zhang*)

1. Characterizations

The Transmission electron microscopy (TEM) and the high-resolution transmission electron microscopy (HRTEM)of the C-dots was characterized using a JEOL 2100F TEM with a magnification of 10 nm and 2 nm to observe the C-dots. A Thermo Scientific K-Alpha photoelectron spectrometer was used to measure the X-ray photoelectron spectra (XPS) of the C-dots. The Fourier transform infrared (FT-IR) was performed on a Nicolet 6700 FT-IR spectrometer. The UV-Vis spectra and the fluorescence spectra of the C-dots was measured by Lambda 750 UV/Vis spectrometer and Edinburgh FLS1000 instrument. The fluorescence lifetime of C-dots was tested by fluorescence spectrometer. The QYs of the as-prepared C-dots were measured using Edinburgh FLS1000 fluorescence spectrophotometer equipped with integrating sphere. The QYs of the C-dots were determined by selecting the excitation wavelength at 375 nm and the emission range from 350 to 700 nm. The Al-C-dots was pumped with a wavelength of 365 nm with the decay time ranging from 300 fs to 1 ns.

For the LSC measurements, one edge of the LSC was fully covered by the commercial solar cells (PCE: 15%). The external optical efficiency and PCE of the LSC was measured at

Qingdao City, China. We chose the noon for the measurement with the light intensity of 50 mW/cm², which was directly measured by using a commercial calibrated Zolix QE-B1 solar cell. As the LSC is symmetrical, we can reasonably assume that the output fluorescent intensity at each edge is same. The external optical efficiency was measured by directly attached a power meter (Newport 843-R) on the edges of the LSC. For the PCE measurement, the measured current intensity was used to calculate the PCE of the LSC by using the equation of PCE = $4 \times (J_{sc} \times V_{oc} \times FF)/(P_{in} \times G) \times 100\%$. The geometric factor (G) was defined as the ratio of surface area and edge area (L/4d), where L is length of the LSC and d is the overall thickness of the LSC. In this study, the G factor is calculated as 4.7. The photostability of the LSC was measured by home-made set-up. The UV light with intensity of 100 mW/cm², was used to excite the LSC and the detector was put on the edge of the LSC in ambient conditions (25 °C, 40% humidity).

Figure S1. Particle size distributions of the C-dots $(A1^{3+})$ (a) and C-dots (Mn^{2+}) (b).

Figure S2. High resolution XPS spectra of (a) Al 2p of the C-dots (Al³⁺) and (b) Mn 2p of the C-dots (Mn^{2+}) .

Figure S4. High resolution XPS of C 1s (a), N 1s (b) spectra of the C-dots (In^{3+}); high resolution XPS C 1s (c), N 1s (d) spectra of the C-dots (Ga^{3+}) and high resolution XPS of C 1s (e), N 1s (f) spectra of the C-dots (Sr^{2+}).

Figure S5. Absorption (a) and fluorescence (b) spectra of the C-dots (Ga^{3+}) and C-dots (In^{3+}). Absorption (c) and fluorescence (d) spectra of the C-dots (Sr^{2+}).

Figure S6. PL spectra of the C-dots (Al³⁺), the contents of the Al³⁺ were 0.5 g,1 g, 1.5 g and 2 g, respectively. The wavelength was at 365 nm (a) or 395 nm (b).

Figure S7. Fluorescence intensity of Al-C-dots in 20 hours continuous illumination.

Figure S8. (a) PL spectra of the C-dots (Al³⁺) and C-dots (Mn²⁺) after printing. The excitation wavelength was set at 365 nm (black and blue) or 395 nm (red and light green). (b) The fluorescence decay curves of the C-dots (Al³⁺) and C-dots (Mn²⁺) after printing. (c) QYs of the C-dots (Al³⁺) and C-dots (Al³⁺) and C-dots (Al³⁺) and C-dots (Al³⁺) after printing at 375 nm. (d) QYs of the C-dots (Mn²⁺) after printing, excited at 375 nm.

Figure S9. (a) The designed and printed anti-counterfeiting patterns on cotton upon room lighting and illumination of 395 nm and 365 nm. (b) The designed, dyed anti-counterfeiting fibers and cotton under room lighting, illumination of 395 nm and 365 nm.

3. Tables				
Table S1 a: Content of v	various elements o	of the C-dots (Mn ²	⁺) from XPS.	
G 1	Relative contents			
Sample	С	N	0	Mn
C-dots (Mn ²⁺)	56.10%	8.41%	33.53%	2.28%
Table S1 b: Content of v	various elements o	of the C-dots (Sr ²⁺) from XPS.	
~ 1	Relative contents			
Sample _	С	N	0	Sr
	C	1	0	51
C-dots (Sr ²⁺)	53.57%	8.19%	36.18%	2.06%
Table S1 c: Content of v	various elements o	of the C-dots (Al ³⁺) from XPS.	
Sample	Relative contents			
	С	Ν	0	Al
C-dots (Al ³⁺)	51.22%	5.96%	31.93%	2.16%

Table S1 d: Content of various elements of the C-dots (In³⁺) from XPS.

) In
9% 1.78%
7

Table 51 C. Content of	i various cicilients of		<u>) nom Xi 5.</u>		
Sample	Relative contents				
	С	Ν	О	Ga	
C-dots (Ga ³⁺)	54.13%	6.74%	37.38%	1.75%	

Table S2: Research summar	y of metal ic	ons doped or o	capped C-dots.
---------------------------	---------------	----------------	----------------

M-C-dots	Synthesis	Precursors	QY	ref
Zn-C-dots	Microwave	ZnSO ₄ , ethylene diamine	14.26%	1
Zn-C-dots	One-step microwave-aided pyrolysis	citric acid, branched PEI _{25k} , and different zinc salts	60%	2
Mn-C-dots	Solvothermal Method	citric acid, urea, manganese acetate, toluene	68.6%	3
Mg-C-dots	Microwave- aided	hen feather, MgSO4	9.23%	4
Cu-C-dots	One-pot hydrothermal method	glucose, CuSO ₄ ·5H ₂ O	39.1%	5
Al-C-dots	One-pot hydrothermal approach	Durian shell, urea, Al(NO ₃) ₃ ·9H ₂ O,	28.7%	6
Al-C-dots	Solvothermal method	Ophenylenediamine, N, N- dimethylformamide	1.99%	7
Ga-C-dots	one-step sonochemical synthesis	Polyethylene glycol- 400 (99.998%), metallic gallium	1.8%	8
Fe-C-dots	Electrochemical oxidation	1,10-phenanthroline, FeCl ₃ ·6H ₂ O	7.5%	9
Mn-C-dots	Heating method	Citric acid, urea, MnCO ₃	61%	This work

Note and references

- 1. Y. Zhu, Y. Lu, L. Shi and Y. Yang, *Microchem. J.*, 2020, **153**, 104517.
- A. Hasanzadeh, F. Radmanesh, E. S. Hosseini, I. Hashemzadeh, J. Kiani, H. Nourizadeh, M. Naseri, Y. Fatahi, F. Chegini, Z. Madjd, A. Beyzavi, P. S. Kowalski and M. Karimi, *Bioconjugate Chem.*, 2021, 32, 1875-1887.
- 3. Y. Liu, D. Chao, L. Zhou, Y. Li, R. Deng and H. Zhang, *Carbon*, 2018, **135**, 253-259.
- 4. T. Liu, N. Li, J. X. Dong, H. Q. Luo and N. B. Li, Sens. Actuators, B, 2016, 231, 147-153.
- 5. A. M. Mahmoud, M. M. El-Wekil, R. Ali, H. A. Batakoushy and R. Y. Shahin, *Microchim. Acta*, 2022, **189**, 183.
- 6. S. Jayaweera, K. Yin, X. Hu and W. J. Ng, J. Fluoresc., 2019, 29, 1291-1300.
- 7. K. Yuan, X. Zhang, X. Li, R. Qin, Y. Cheng, L. Li, X. Yang, X. Yu, Z. Lu and H. Liu, *Chem. Eng. J.*, 2020, **397**, 125487.
- 8. V. B. Kumar, R. Kumar, A. Gedanken and O. Shefi, Ultrason. Sonochem., 2019, 52, 205-213.
- 9. S. Sun, W. Bao, F. Yang, X. Yan, Y. Sun, G. Zhang, W. Yang and Y. Li, *Green Energy Environ.*, 2023, **8**, 141-150.