Supplementary Material

Improving performance of sky-blue perovskite lightemitting diodes by triple additives

Dan Chen, Ganshuai Zhang, Yu Mao, Ji chen Zhao, Xiang lan Huang, Jian Wang* and Junbiao Peng

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China. E-mail: jianwang@scut.edu.cn

Figure S1. Device performance of PeLEDs with different concentrations of LiBr. (a) *J-V-L* characteristics, (b) CE-*J* characteristics, (c) EL spectra of PeLEDs at an operating voltage of 4 V, and (d) maximum EQE and EL peak wavelength.

Figure S2. Device performance of PeLEDs with different concentrations of p-F-PEABr. (a) *J-V-L* characteristics, (b) EL spectra of PeLEDs at an operating voltage of 4 V, and (c) maximum EQE, and (d) UV-vis spectra of perovskite films.

Figure S3. Molecular structures of p-F-PEABr and DEABr.

Figure S4. UV-vis spectra of 60% DEABr doped perovskite film.

Figure S5. Device performance of PeLEDs with different concentrations of DEABr.(a) *J-V-L* characteristics, (b) EQE-*J* characteristics, (c) EL spectra of PeLEDs at an operating voltage of 4 V, and (d) maximum EQE.

Figure S6. EL spectra under different bias voltages.

Figure S7. TA spectra of a) 20% LiBr, and b) 20% LiBr, 20% DEABr perovskite films at selected probe delay times. TA spectra of c) 20% LiBr, and d) 20% LiBr, 20% DEABr perovskite films at different wavelength as a function of delay time.

Additive	Phase	GSB	$ au_1$	τ_2
		(nm)	(ps)	(ps)
20% LiBr	n = 2	420	8.92	122.87
	n = 3	446	20.49	234.71
20% LiBr,	n = 2	420	10.02	79.64
20% DEABr	n = 3	446	26.41	246.87

TABLE S1. Fitting parameters for the kinetics shown in Fig. S7 c), d).

The kinetics are fitted by the bi-exponential function¹: $\frac{\Delta A(t)}{A} = C_1 e^{-t/\tau_1} + C_2 e^{-t/\tau_2}$ where C_1 and C_2 and C_3 and C_4 where C_1 , and C_2 are the amplitudes; τ_1 and τ_2 are the decay time constants. The fast decay τ_1 is attributed to the energy transfer from the low n phases to the high n phases. The slow decay τ_2 is attributed to the nonradiative recombination.

1. B. Wang, Y.-H. Zhou, S. Yuan, Y.-H. Lou, K.-L. Wang, Y. Xia, C.-H. Chen, J. Chen, Y.-R. Shi, Z.-K. Wang and L.-S. Liao, Angew. Chem. Int. Ed., 2023, 62, e202219255.