Straddling SnSe₂/SnS₂ van der Waals tunneling heterostructures for high performance broadband photodetectors

Xiangna Cong^a, Muhammad Najeeb Ullah Shah^b and Wenlong He^{a,*}

^aKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics & Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

^bInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China

*Authors to whom correspondence should be addressed.

Electronic mail: wenlong.he@szu.edu.cn

Figure S1 The transport and output curves of SnS_2 (a, b) and $SnSe_2$ (c, d) for $SnSe_2/SnS_2/h$ -BN/graphene heterostructure.

In order to enhance the comprehension of the charge transfer mechanism in the SnS_2 and $SnSe_2$ heterostructure, electrical measurements are applied on individual SnS_2 and $SnSe_2$ flakes. The output and transfer curves of SnS_2 and $SnSe_2$ are shown in Figure S1. It is observed that the gate voltage has a significant impact on the SnS_2 current, implying that the Fermi level of SnS_2 can be readily modulated by the gate voltage. The $SnSe_2$ transfer curve exhibits n-type conduction characteristics, with a high drain current and minimal modulation within the gate voltage range of -5 to 5 V (Figure S1c), implying that a high electron density and a Fermi level situated close to the $SnSe_2$ conduction band minimum.

Figure S2 (a) Optical image of the $SnSe_2/SnS_2$ heterostructure. (b) Raman spectra of the $SnSe_2/SnS_2$ heterostructure. The output (c) and transport (d) curves for $SnSe_2/SnS_2$ heterostructure.

Figure S2c-S2d illustrates the electrical characteristics of the $SnSe_2/SnS_2$ heterostructure at various voltages. The currents exhibit a decreasing trend as the V_g decreases, indicating the gate tunability of the $SnSe_2/SnS_2$ heterostructure in Figure S2c.

Figure S3 The output and transport curves of SnS_2 (a, b) and $SnSe_2$ (c, d) for $SnSe_2/SnS_2$ heterostructure.

According to Figure S3, the output characteristics of the $SnSe_2/SnS_2$ heterostructure are investigated under varying gate voltage. Notably, the current of SnS_2 demonstrates a substantial variation across different gate voltages, indicating that the current is predominantly modulated by the gate voltage. The transfer characteristics of $SnSe_2$ (SnS_2) under a gate voltage of 1V demonstrate n-type semiconductor behavior. This indicates that the material exhibits characteristics associated with electron conduction.

Figure S4 XPS spectra of (a) Sn 3d, (b) S 2p in SnS₂, (d) Sn 3d, (e) Se 3d in SnSe₂, valence band spectra of (c) SnS₂, (f) SnSe₂.

The X-ray photoelectron spectroscopy (XPS) spectra of SnS_2 and $SnSe_2$, are illustrated in Figure S4. In the SnS_2 heterostructure, the characteristic peaks of the S element are attributed to the S $2p_{3/2}$ (161.31 eV) and S $2p_{1/2}$ (162.52 eV) (Figure S4b), respectively. Additionally, the peaks of Se element at 53.49 eV (Se $3d_{5/2}$) and 54.35 eV (Se $3d_{3/2}$) correspond to $SnSe_2$ (Figure S4e). To validate the band structure, we assess the valence band spectra of both SnS_2 and $SnSe_2$, the valence band maximum values of 6.65 eV and 5.71 eV for SnS_2 (Figure S4c) and $SnSe_2$ (Figure S4f) are conducted.

Figure S5 Absorption spectra of (a) SnS₂, (b) SnSe₂ and (c) SnS₂/SnSe₂ heterostructure.

By analyzing the absorption spectra (as illustrated in Figure S5), SnS₂ exhibits a broad absorption peak spanning from 350 nm to 500 nm, indicating that its remarkable optical absorption characteristics across the ultraviolet-visible spectrum. SnSe₂ has the light absorption peak in the range of ultraviolet-visible spectrum, featuring a pronounced absorption peak at wavelengths between 400 nm and 700 nm. A noticeable expansion in the range of light absorption is found in the SnSe₂/SnS₂ heterostructure, with heightened absorption intensity particularly in the visible region, which signifies the potential of the SnSe₂/SnS₂ heterostructure in the realm of optoelectronic devices.

Figure S6 Responsivity as a function of wavelengths for the $SnSe_2/SnS_2/h-BN/graphene$ heterostructure.

Figure S7 The rise (a) and decay time (b)of the $SnSe_2/SnS_2$ heterostructure.

Materials	Туре	Wavelength (nm)	R (A/W)	On/off ratio	D* (Jones)	$\tau_{\rm r}({\rm ms})$	$ au_{\rm d}$ (ms)	Reference
WS ₂ /h-BN/PdSe ₂	-	520	-	106	2.7x10 ¹²	-	-	1
GaTe/InSe	II	1064	267.4	-	10 ¹⁴	10 ³	10 ³	2
BiI ₃ /BiI	II	638	1	>10 ³	8.8x10 ¹²	0.00382	0.00467	3
SnS_2/MoS_2	II	532	28	106	4x10 ¹¹	640	410	4
MoTe ₂ /SnSe ₂	III	885	36	105	1.03x10 ¹²	10	12	5
PdSe ₂ /MoS ₂	II	532	9	-	3x10 ¹⁰	125	7	6
WS_2/PtS_2	Ι	653	0.33	>10 ⁵	4.3x10 ¹⁰	55	54	7
GeSe/MoS ₂	II	532	0.105	104	1.46x10 ¹⁰	110	750	8
InSe/ReS ₂	-	365	1921	-	6.51x10 ¹³	21.6	43.2	9
WSe ₂ /MoS ₂	II	532	2700	10 ²	5x10 ¹¹	17	29	10
InSe/PdSe ₂	II	1650	58.8	-	1x10 ¹⁰	160	180	11
WSe ₂ /ReS ₂	II	532	3	-	8.39x10 ¹⁰	0.005	0.005	12
SnSe ₂ /SnS ₂	Ι	365	37.5	107	1.2x10 ¹⁰	47	48	This work

Table S1 Comparison the parameters of various type I-III vdW heterostructures photodetectors.

References

- 1 Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye, X. Chai, J. Ye, Y. Chen, R. Xie, Y. Zhou, Z. Hu, Q. Li, L. Zhang, F. Wang, P. Wang, J. Miao, J. Wang, X. Chen, W. Lu, P. Zhou and W. Hu, *Nat Electron*, 2021, 4, 357–363.
- 2 T. Qi, Y. Gong, A. Li, X. Ma, P. Wang, R. Huang, C. Liu, R. Sakidja, J. Z. Wu, R. Chen and L. Zhang, *Adv Funct Materials*, 2020, **30**, 1905687.
- 3 H. Mu, R. Zhuang, N. Cui, S. Cai, W. Yu, J. Yuan, J. Zhang, H. Liu, L. Mei, X. He, Z. Mei,
 G. Zhang, Q. Bao and S. Lin, *ACS Nano*, 2023, 17, 21317–21327.
- 4 S. Quan, L. Li, S. Guo, X. Zhao, D. Weller, X. Wang, S. Fu, R. Liu and Y. Hao, *ACS Appl. Mater. Interfaces*, 2023, **15**, 59592–59599.
- 5 X. Cong, Y. Zheng, F. Huang, Q. You, J. Tang, F. Fang, K. Jiang, C. Han and Y. Shi, *Nano Res.*, 2022, **15**, 8442–8450.
- H. Wang, Z. Li, D. Li, X. Xu, P. Chen, L. Pi, X. Zhou and T. Zhai, *Adv Funct Materials*, 2021, 31, 2106105.
- Z. Wang, H. Zhang, W. Wang, C. Tan, J. Chen, S. Yin, H. Zhang, A. Zhu, G. Li, Y. Du, S.
 Wang, F. Liu and L. Li, ACS Appl. Mater. Interfaces, 2022, 14, 37926–37936.
- Y. Xin, X. Wang, Z. Chen, D. Weller, Y. Wang, L. Shi, X. Ma, C. Ding, W. Li, S. Guo and
 R. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 15406–15413.
- 9 H. Ma, Y. Xing, J. Han, B. Cui, T. Lei, H. Tu, B. Guan, Z. Zeng, B. Zhang and W. Lv, *Advanced Optical Materials*, 2022, **10**, 2101772.
- 10 G. H. Shin, C. Park, K. J. Lee, H. J. Jin and S.-Y. Choi, Nano Lett., 2020, 20, 5741–5748.
- 11 W. Ahmad, J. Liu, J. Jiang, Q. Hao, D. Wu, Y. Ke, H. Gan, V. Laxmi, Z. Ouyang, F. Ouyang, Z. Wang, F. Liu, D. Qi and W. Zhang, *Adv Funct Materials*, 2021, **31**, 2104143.

12 A. Varghese, D. Saha, K. Thakar, V. Jindal, S. Ghosh, N. V. Medhekar, S. Ghosh and S. Lodha, *Nano Lett.*, 2020, 20, 1707–1717.