Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplemental Material for

Multiferroicity in 2D MSX₂ (M = Nb and Zr; X = Cl, Br, and I)

Yutong Li^{1,2}, Haoyun Bai², Zhichao Yu², Chi Tat Kwok^{1,2*}, and Hui Pan^{2,3*}

¹ Department of Electromechanical Engineering, Faculty of Science and Technology,

University of Macau, Macao SAR, China

² Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR,

China

³ Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, China

*Corresponding authors:

C. T. Kwok: fstctk@um.edu.mo (email)

H. Pan: huipan@um.edu.mo (email)

Figure S1 The total energy as a function of thickness of vacuum layer in (a) ZrSCl₂, (b) ZrSBr₂, (c) ZrSI₂, (d) NbSCl₂, (e) NbSBr₂, (f) NbSI₂. The vacuum layers used in our calculations is marked in blue blocks.

Figure S2 P. D. of (a) $ZrSX_2$ (b) $NbSX_2$ with different U values.

Figure S3 Phonon dispersions: FE $ZrSCl_2$ (a) without and (b) with a tension of 5% along the *b*-axis; FE $ZrSBr_2$ (c) without and (d) with a tension of 5% along the *b*-axis; FE $ZrSI_2$ (e) without and (f) with a tension of 5% along the *b*-axis.

Figure S4 Phonon dispersions: PE $ZrSCl_2$ (a) without and (b) with U = 3 eV; PE $ZrSBr_2$ (c) without and (d) with U = 3 eV; PE $ZrSI_2$ (e) without and (f) with U = 3 eV.

Figure S5 Phonon dispersions: FE NbSCl₂ (a) without and (b) with U = 3 eV; FE NbSBr₂ (c) without and (d) with U = 3 eV; FE NbSI₂ (e) without and (f) with U = 3 eV.

Figure S6 Phonon dispersions at U = 3 eV under a tension of 5% along the *b*-axis: (a) PE and (b) FE NbSCl₂; (c) PE and (d) FE NbSBr₂; (e) PE and (f) FE NbSI₂.

Figure S7 Phonon dispersions: FE ZrSCl₂ (a) with U = 1 eV and (b) U = 2 eV; FE ZrSBr₂ (c) with U = 1 eV and (d) U = 2 eV; FE ZrSI₂ (e) with U = 1 eV and (f) U = 2 eV.

Figure S8 Phonon dispersions: FE NbSCl₂ (a) with U = 1 eV and (b) U = 2 eV; FE NbSBr₂ (c) with U = 1 eV and (d) U = 2 eV; FE NbSI₂ (e) with U = 1 eV and (f) U = 2 eV.

Figure S9 (a) The total energies and (b) the MSDs of $ZrSCl_2$, (c) the total energies and (d) the MSDs of $ZrSBr_2$, and (e) the total energies and (f) the MSDs of $ZrSI_2$ during the AIMD simulations.

Figure S10 (a) The total energies and (b) the MSDs of NbSCl₂, (c) the total energies and (d) the MSDs of NbSBr₂, and (e) the total energies and (f) the MSDs of NbSI₂ with U = 3 eV during the AIMD simulations.

Figure S11 (a) Young's modulus and (b) Poisson's ratio of ZrSCl₂, (c) Young's modulus and (d) Poisson's ratio of ZrSBr₂, and (e) Young's modulus and (f) Poisson's ratio of ZrSI₂.

Figure S12 (a) Young's modulus and (b) Poisson's ratio of $ZrSCl_2$, (c) Young's modulus and (d) Poisson's ratio of $ZrSBr_2$, and (e) Young's modulus and (f) Poisson's ratio of $ZrSI_2$ under a tension of 5% along the *b*-axes.

Figure S13 (a) Young's modulus and (b) Poisson's ratio of $ZrSCl_2$, (c) Young's modulus and (d) Poisson's ratio of $ZrSBr_2$, and (e) Young's modulus and (f) Poisson's ratio of $ZrSI_2$ with U = 3 eV.

Figure S14 (a) Young's modulus and (b) Poisson's ratio of NbSCl₂, (c) Young's modulus and (d) Poisson's ratio of NbSBr₂, and (e) Young's modulus and (f) Poisson's ratio of NbSI₂ with U = 3 eV.

Figure S15 (a) Young's modulus and (b) Poisson's ratio of NbSBr₂, and (c) Young's modulus and (d) Poisson's ratio of NbSI₂ with U = 3 eV and a tension of 5% along the *b*-axis.

Figure S16 The energies relative to FE states as a function of step number within NEB for FE and AFE states during the ferroelastic switching in (a) ZrSX₂ and (b) NbSX₂. The inset is the energy barriers of ferroelastic switching in NbSBr₂ and NbSI₂ under a tension of 5 % along the *b*-axes.

Figure S17 Top views of AFM states in a 2×2×1 supercell. Red, yellow, and green spheres denote M, S, and X atoms, respectively. White and pink arrows represent the spin-up and spin-down moments, respectively.

Figure S19 The simulated average magnetic moment (M) and specific heat (C_V) as the functions of temperature: (a) NbSCl₂, (b) NbSBr₂, and (c) NbSI₂.

Figure S20 Band structures: FE $ZrSCl_2$ by (a) DFT and (b) HSE06, FE $ZrSBr_2$ by (c) DFT and (d) HSE06, and FE $ZrSI_2$ by (e) DFT and (f) HSE06.

Figure S21 Band structures of (a) FE NbSCl₂, (b) FE NbSBr₂, and (c) FE NbSI₂ by DFT+U(U = 3 eV).

Figure S22 Band edge positions with HSE06 relative to the water redox potentials (pH = 0). positions of the reduction (H^+/H_2) and oxidation (O_2/H_2O) potentials of water are denoted by black and green dash lines, respectively.

Figure S23 (a) PDOSs of ions and (b) PDOSs of the *d* electrons of Zr atoms for FE ZrSCl₂, (c) PDOSs of ions and (d) PDOSs of the *d* electrons of Zr atoms for FE ZrSBr₂, and (e) PDOSs of ions and (f) PDOSs of the *d* electrons of Zr atoms for FE ZrSI₂.

Figure S24 At U = 3 eV, (a) PDOSs of ions and (b) PDOSs of the *d* electrons of Nb atoms for FE NbSCl₂, (c) PDOSs of ions and (d) PDOSs of the *d* electrons of Nb atoms for FE NbSBr₂, and (e) PDOSs of ions and (f) PDOSs of the *d* electrons of Nb atoms for FE NbSI₂.

Figure S25 Top views of charge densities in FE (a) $ZrSCl_2$, (b) $ZrSBr_2$, and (c) $ZrSI_2$ and ELFs of (d) $ZrSCl_2$, (e) $ZrSBr_2$, and (f) $ZrSI_2$.

Figure S26 Top views of spin densities in FE (a) NbSCl₂, (b) NbSBr₂, and (c) NbSI₂ and ELFs of (d) NbSCl₂, (e) NbSBr₂, and (f) NbSI₂ with U = 3 eV. The spin-up density is shown in yellow and the spin-down density is shown in blue, respectively.

Figure S27 (a) Bands and (b) PDOSs of PE $ZrSCl_2$, (c) bands and (d) PDOSs of PE $ZrSBr_2$, and (e) bands and (f) PDOSs of PE $ZrSI_2$ without U.

Figure S28 (a) Bands and (b) PDOSs of $ZrSCl_2$, (c) bands and (d) PDOSs of $ZrSBr_2$, and (e) bands and (f) PDOSs of $ZrSI_2$ with U = 3 eV.

Figure S29 (a) Bands and (b) PDOSs of PE NbSCl₂, (c) bands and (d) PDOSs of PE NbSBr₂, and (e) bands and (f) PDOSs of PE NbSI₂ with U = 3 eV.

Figure S30 Projected bands of Nb atoms of (a) FE and (b) PE NbSBr₂ with U = 3 eV.

MCV	U	mbaga	a (Å)	h (Å)	M-S	M-S	M-X	0 (9)	0 (%)
MSA ₂	(eV)	phase	a (A)	0 (A)	(Å)	(Å)	(Å)	$\theta_1()$	$\theta_2()$
$ZrSCl_2$	0	FE	3.793	4.952	2.301	2.651	2.577	95.240	84.760
$ZrSCl_2$	0	PE	3.814	4.875	2.438	2.438	2.579	90	90
$ZrSCl_2$	3	PE	3.852	4.909	2.455	2.455	2.600	90	90
$ZrSBr_2$	0	FE	3.935	4.939	2.304	2.635	2.735	95.159	84.841
$ZrSBr_2$	0	PE	3.955	4.870	2.435	2.435	2.737	90	90
$ZrSBr_2$	3	PE	3.993	4.906	2.453	2.453	2.759	90	90
$ZrSI_2$	0	FE	4.167	4.912	2.320	2.592	2.956	94.389	85.611
$ZrSI_2$	0	PE	4.181	4.864	2.432	2.432	2.958	90	90
$ZrSI_2$	3	PE	4.221	4.902	2.451	2.451	2.981	90	90
NbSCl ₂	0	FE	3.336	4.919	2.187	2.733	2.491	97.615	82.385
NbSCl ₂	3	FE	3.599	4.913	2.226	2.687	2.526	97.171	82.829
NbSCl ₂	3	PE	3.643	4.775	2.388	2.388	2.532	90	90
NbSBr ₂	0	FE	3.515	4.877	2.208	2.669	2.654	97.027	82.973
NbSBr ₂	3	FE	3.766	4.886	2.23	2.655	2.683	96.822	83.178
NbSBr ₂	3	PE	3.801	4.766	2.383	2.383	2.689	90	90
$NbSI_2$	0	FE	3.799	4.766	2.226	2.540	2.852	95.574	84.426
$NbSI_2$	3	FE	4.048	4.842	2.241	2.601	2.895	96.053	82.947
$NbSI_2$	3	PE	4.076	4.753	2.376	2.376	2.902	90	90

Table S1 Lattice parameters, bond lengths, and bond angles of the proposed structures.

Table 52 Folar displacements of structures (A) with different (Table S2 Polar dis	placements of structures	(Å) with different U
---	--------------------	--------------------------	----	--------------------

	1			
MSX ₂	U = 0	U = 1 eV	U = 2 eV	U = 3 eV
ZrSCl ₂	0.175	0.132	0.071	0
ZrSBr ₂	0.165	0.122	0.057	0
$ZrSI_2$	0.136	0.089	0.004	0
NbSCl ₂	0.273	0.239	0.215	0.157
NbSBr ₂	0.231	0.345	0.334	0.319
NbSI ₂	0.157	0.203	0.193	0.172

MCV	$T_{austice}(0/)$	$U(\mathbf{A} V)$	E_{f}
MSA_2	Tension (%)	U(ev)	(eV/unitcell)
ZrSCl ₂	0	0	-1.835
$ZrSCl_2$	5	0	-1.822
$ZrSCl_2$	0	3	-1.410
$ZrSBr_2$	0	0	-1.530
$ZrSBr_2$	5	0	-1.516
$ZrSBr_2$	0	3	-1.101
$ZrSI_2$	0	0	-1.208
$ZrSI_2$	5	0	-1.192
$ZrSI_2$	0	3	-0.775
NbSCl ₂	0	3	-0.745
NbSCl ₂	5	3	-0.684
NbSBr ₂	0	3	-0.457
NbSBr ₂	5	3	-0.437
$NbSI_2$	0	3	-0.165
NbSI ₂	5	3	-0.147

Table S3 Formation energies of structures.

Table S4 Formation energies of other potential phases.

$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	
ZrSCl ₂ 3 -2.330 -0.731	
$ZrSBr_2 $ 0 -0.869 -0.451	
ZrSBr ₂ 3 -1.217 -0.710	
$ZrSI_2$ 0 0.320 -0.534	
ZrSI ₂ 3 -0.012 -0.792	
NbSCl ₂ 3 -1.664 -0.768	
NbSBr ₂ 3 -0.635 -0.923	
<u>NbSI₂</u> 3 0.435 -1.091	

Table S5 Energies (eV) and lattice parameters (Å) of $ZrSX_2$ with and without spin.

ZrSX ₂	Including spin	U(eV)	Energy (eV)	a (Å)	b (Å)
ZrSCl ₂	yes	0	-22.472	3.793	4.952
$ZrSCl_2$	no	0	-22.472	3.793	4.952
$ZrSBr_2$	yes	0	-21.128	3.935	4.939
$ZrSBr_2$	no	0	-21.128	3.935	4.939
$ZrSI_2$	yes	0	-19.741	4.167	4.912
$ZrSI_2$	no	0	-19.741	4.167	4.912

	Table	e S6 Energies	(eV) of AFN	A states of NI	bSX_2 .	
	NbSX ₂	FM	AFM1	AFM2	AFM3	
	NbSCl ₂	-78.310	-79.211	-78.285	-79.214	
	NbSBr ₂	-73.979	-74.119	-73.968	-74.123	
	NbSI ₂	-68.980	-69.043	-68.961	-69.049	
_						

Table S6 Er ries (aV) of AFM FNLCV

Table S7 Bandgaps of the proposed structures.

MSX_2	phase	method	Band gap (eV)
ZrSCl ₂	FE	DFT	1.022
ZrSCl ₂	PE	DFT	0.674
ZrSCl ₂	PE	DFT+ U , $U = 3 \text{ eV}$	0.954
ZrSCl ₂	FE	HSE06	1.963
$ZrSBr_2$	FE	DFT	1.059
$ZrSBr_2$	PE	DFT	0.787
$ZrSBr_2$	PE	DFT+ U , $U = 3 \text{ eV}$	1.112
ZrSBr ₂	FE	HSE06	1.984
$ZrSI_2$	FE	DFT	1.015
$ZrSI_2$	PE	DFT	0.803
$ZrSI_2$	PE	DFT+ U , $U = 3 \text{ eV}$	1.118
$ZrSI_2$	FE	HSE06	1.873
NbSCl ₂	FE	DFT+ U , $U = 3 \text{ eV}$	1.287
NbSCl ₂	PE	DFT+ U , $U = 3 \text{ eV}$	0.369
NbSBr ₂	FE	DFT+ U , $U = 3 \text{ eV}$	1.204
NbSBr ₂	PE	DFT+ U , $U = 3 \text{ eV}$	0.547
NbSI ₂	FE	DFT+ U , $U = 3 \text{ eV}$	1.006
NbSI ₂	PE	DFT+ U , $U = 3 \text{ eV}$	0.538

Table S8 Bond angles of proposed structures with and without tension (°).

MSX ₂	U(eV)	Tension (%)	θ_1	θ_2	α_1	α_2	$(\alpha_1+\alpha_2)/2$
ZrSCl ₂	0	0	95.240	84.760	94.765	84.276	89.521
$ZrSCl_2$	0	5	98.085	81.915	94.790	82.932	88.861
ZrSBr ₂	0	0	95.159	84.841	92.007	87.067	89.537
ZrSBr ₂	0	5	98.133	81.867	92.113	85.590	88.852
$ZrSI_2$	0	0	94.389	85.611	89.629	89.701	89.665
$ZrSI_2$	0	5	97.719	82.281	89.805	88.127	88.966
NbSBr ₂	3	0	96.822	83.178	89.156	89.227	89.192
NbSBr ₂	3	5	98.909	81.091	93.421	83.820	88.621
$NbSI_2$	3	0	96.053	82.947	88.726	90.000	89.363
$NbSI_2$	3	5	98.308	81.692	92.200	85.403	88.802