Supplementary Materials

Orientated hydrogen chains favor superconductivity in

germanium sulfur hydrides

Xiaojun Wang¹, Xiao Tang¹, Limin Shi¹, Xin Chen^{1,2*} and Xiaobing Liu^{1,2}

1. Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical

Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.

2. Advanced Research Institute of Multidisciplinary Science, Qufu Normal University, Qufu, Shandong, 273165,

China

*Email: chenxin@qfnu.edu.cn

FIG. S1 Calculated electronic band structures and partial density of states (PDOS). (a) C2 GeSH₁₂ at 0 GPa, (b) C2/c GeSH₁₄ at 0 GPa, (c) $P2_1$ GeSH₁₄ at 20 GPa and (d) $P2_1$ GeSH₁₆ at 20 GPa.

FIG. S2 The change of lattice parameters for $P2_1/m$ GeSH₁₄ with respect to pressure.

FIG. S3 The optimized crystal structures of (a) $P2_1/m$ -I and (b) $P2_1/m$ -II GeSH₁₄ at 139 GPa.

FIG. S4 The optimized crystal structures and corresponding valence electron localization function (ELF) for GeSH₇ at high pressure. (a) The *Cm* phase at 0 GPa and its ELF at (b). (c) The *C2/m* phase at 20 GPa and its ELF at (d). (e) The *P6₃mc* phase at 60 GPa and its ELF at (f). (g) The *Pmn2*₁ phase at 140 GPa and its ELF at (h). Purple, yellow and pink spheres represent Ge, S and H atoms, respectively.

FIG. S5 The optimized crystal structures and corresponding valence electron localization function (ELF) for GeSH₈ at high pressure. (a) The *Cm* phase at 0 GPa and its ELF at (b). (c) The *Cmcm* phase at 20 GPa and its ELF at (d). (e) The *C2/m* phase at 80 GPa and its ELF at (f). (g) The *Cmmm* phase at 160 GPa and its ELF at (h). Purple, yellow and pink spheres represent Ge, S and H atoms, respectively.

FIG. S6 The optimized crystal structures and corresponding valence electron localization function (ELF) for $GeSH_{12}$ at high pressure. (a) The C2 phase at 0 GPa and its ELF at (b). (c) The P-1 phase at 120 GPa and its ELF at (d). Purple, yellow and pink spheres represent Ge, S and H atoms, respectively.

FIG. S7 The optimized crystal structures and corresponding valence electron localization function (ELF) for GeSH₁₆ at high pressure. (a) The $P2_1/m$ phase at 60 GPa and its ELF at (b). (c) The $P2_1/c$ phase at 100 GPa and its ELF at (d). Purple, yellow and pink spheres represent Ge, S and H atoms, respectively.

FIG. S8 The calculated T_c values of $P2_1/m$ GeSH₁₄ at various pressures by taking a series of $\mu^* = 0.08, 0.1$ and 0.13.

FIG. S9 The calculated phonon dispersions, phonon density of states (PHDOS), the Eliashberg spectral function $\alpha^2 F(\omega)$ (orange area) and frequency-dependent electron-phonon coupling parameters $\lambda(\omega)$ (blue line) of $P2_1/m$ -I GeSH₁₄ at 100 GPa.

FIG. S10 Calculated partial density of states (PDOS) of P21/m-I GeSH14 at 120 GPa

Dhose	Pressure (GPa)	Lattice	Wyo	Wyckoff positions (fractional)			
Phase		parameters (Å, °)	Atom	х	у	Z	
			Ge(2a)	0.6849	0.3557	0.5028	
		<i>a</i> = 5.1173 <i>b</i> = 5.1618 <i>c</i> = 6.7489	S(2a)	0.2529	0.2801	0.5241	
			H(2a)	-0.0097	0.5179	0.1383	
			H(2a)	0.9372	0.9685	0.7738	
			H(2a)	0.0640	0.1258	0.2065	
			H(2a)	0.2419	0.2797	0.8738	
	20		H(2a)	0.5317	0.5160	0.1451	
D) CaSH			H(2a)	0.5904	0.9756	0.8026	
$P2_1$ GeSH ₁₄			H(2a)	0.4782	0.5239	0.8438	
			H(2a)	0.4109	0.1120	0.1814	
			H(2a)	0.2936	0.8060	0.0360	
			H(2a)	0.1951	0.7436	0.9717	
			H(2a)	0.7889	0.2585	0.6985	
			H(2a)	0.7672	0.2313	0.3089	
			H(2a)	-0.0164	0.5105	0.8495	
			H(2a)	0.7540	0.7951	0.0158	
			Ge(2e)	0.2335	0.2500	0.2876	
			S(2e)	0.7428	0.2500	0.2266	
			H(2e)	0.9561	0.2500	0.8926	
			H(2e)	0.9751	0.2500	0.3385	
			H(2e)	0.4041	0.2500	0.9430	
	80	<i>a</i> =10.8292 <i>b</i> = 3.1257 <i>c</i> = 3.4427	H(2e)	0.0848	0.2500	0.7268	
			H(2e)	0.5980	0.2500	0.8011	
D) /m I CaSII			H(2e)	0.5591	0.2500	0.3874	
<i>P2</i> ₁ / <i>m</i> -1 GeSH ₁₄			H(2e)	0.4115	0.2500	0.7274	
			H(2e)	0.9007	0.2500	0.7495	
			H(2e)	0.0941	0.2500	0.9523	
			H(2e)	0.5089	0.7500	0.6537	
			H(2e)	0.1324	0.7500	0.7625	
			H(2e)	0.4576	0.7500	0.0779	
			H(2e)	0.9539	0.7500	0.6201	
			H(2e)	0.6258	0.7500	0.6600	
			Ge(2e)	0.72342	0.2500	0.8298	
			S(2e)	0.2175	0.2500	0.3305	
		<i>a</i> =3.2751	H(4f)	0.4879	0.0706	0.8611	
P_{21}/m -II	140	<i>b</i> =9.5446	H(4f)	0.8834	0.9943	0.7360	
GeSH ₁₄		<i>c</i> =3.0294	H(4f)	0.6185	0.0442	0.3279	
			H(4f)	0.7358	0.5943	0.1735	
			H(4f)	0.0829	0.5814	0.1569	

TABLE S1. Structural information of $P2_1/m$ -I and $P2_1/m$ -II phases of GeSH₁₄, $P2_1/m$ and $P2_1/c$ phases of GeSH₁₆.

			H(4f)	0.2762	0.6149	0.6478
			H(4f)	0.1970	0.4072	0.3449
			Ge(2e)	0.3792	0.7500	0.1715
			S(2e)	0.8025	0.7500	0.6737
			H(4f)	0.0101	0.3759	0.8317
		2 7085	H(4f)	0.2638	0.9411	0.6664
D) /m CaSH	60	a = 3.7983	H(4f)	0.2427	0.6253	0.6572
$P2_1/m$ GeSH ₁₆	60	b=11.2700	H(4f)	0.9946	0.0577	0.8467
		C = 3.2441	H(4f)	0.2263	0.4109	0.3273
			H(4f)	0.4301	0.4157	0.7380
			H(4f)	0.4755	0.5752	0.0607
			H(4f)	0.7521	0.9788	0.665
			Ge(2b)	0.5000	0.0000	1.0000
			S(2c)	0.0000	0.0000	0.5000
			H(4e)	0.9263	0.0012	0.8735
			H(4e)	0.3618	0.2234	0.7948
D_{2} / C_{2} CI	100	a = 3.0452	H(4e)	0.8671	0.4993	0.7755
$P2_1/c$ GeSH ₁₆	100	D= 3.3038	H(4e)	0.3583	0.7754	0.7952
		<i>c</i> =10.9695	H(4e)	0.5874	0.7950	0.6386
			H(4e)	0.1442	0.4980	0.6959
			H(4e)	0.4158	0.7037	0.8618
			H(4e)	0.8991	0.4995	0.8497
		<i>a</i> = 3.0452				
P-1 GeSH ₁₂	100	<i>b</i> = 3.5638				
		c=10.9695				

Phase	Pressure (GPa)	λ	$\omega_{\log}\left(\mathrm{K} ight)$	$N(E_{\rm f})$ (states/Ry)	$T_{c}\left(\mathrm{K} ight)$
$P2_{1}/m$	60	0.58	333.6	6.9	5.3
	80	0.83	249.8	4.2	16.7
P2 ₁ /c	140	1.41	596.5	14.0	63.7
	160	1.70	481.3	14.1	72.4
	180	2.23	317.0	13.8	62.1
	200	1.26	561.2	11.7	53.4

TABLE S2. Superconducting properties of $GeSH_{16}$ under pressure. The μ^* value for the T_c calculation is 0.1.