Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Pressure and Temperature Phase Diagram of CsCaCl₃

SUPPLEMENTARY INFORMATION

Craig L Bull,^{*a,b*} Christopher J Ridley,^{*a*} Nicholas Funnell,^{*a*} Sumit Komar,^{*b*} and James Cumby^{*b*}

^a ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus,

Didcot, OX11 0QX, UK

^b EastCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK

*To whom correspondence should be addressed; E-mail: craig.bull@stfc.ac.uk

Submitted to J Mat Chem C

Table S1: Derived structural parameters for a perovskite in both cubic $(P\bar{3}m)$ and tetragonal (I4/mcm) symmetry, where $(tan(\phi) = 4u)$ and u is the dispalcement of the x and y co-ordinate of the Cl atom in the tetragonal phase (after K. S. Knight *et al*, Physics and Chemistry of Minerals 41, 461 (2014))

Structural	$Pm\bar{3}m$	I4/mcm			
Parameter					
A-X(1)	$\frac{a}{\sqrt{2}}$	$\frac{a}{2}$			
A-X(2)	-	$\frac{1}{4} \left[2a^2 \left(1 - 2\phi + \phi^2 - \frac{2}{3}\phi^3 \right) + c^2 \right]^{0.5}$			
A-X(2)	-	$\frac{1}{4} \left[2a^2 \left(1 + 2\phi + \phi^2 + \frac{2}{3}\phi^3 \right) + c^2 \right]^{0.5}$			
B-X(1)	$\frac{a}{2}$	$\frac{c}{4}$			
B-X(2)	-	$\frac{a}{2\sqrt{2}} \left[1 + \frac{1}{2}\phi^2 + \frac{5}{24}\phi^4 \right]$			
AX_n volume	$\frac{5a^3}{6}$	$\frac{a^2c}{24} \left[3 - \phi - \frac{1}{3}\phi^2 - \frac{2}{15}\phi^5 - \frac{17}{315}\phi^7 \right]$			
BX_6 volume	$\frac{a^3}{6}$	$\frac{a^2c}{24} \left[1 + \phi^2 + \frac{2}{3}\phi^4 + \frac{17}{45}\phi^6 + \frac{62}{315}\phi^8 \right]$			

$$l_{pc}(T) = l_{pc0} + \frac{A_{pc}}{\exp\left(\frac{B_{pc}}{T}\right) - 1}$$

Einstein internal energy model fitted to the pseudo–cubic lattice parameter l_{pc} with temperature (*T*) using an Einstein temperature (B_{pc}). For these models we find a_{pc0} =5.3650 Å, Aa_{pc} =0.0466 Å, Ba_{pc} =129.5 K and c_{pc0} =5.3981 Å, Ac_{pc} =-0.0431 Å, Bc_{pc} =140.7 K.

$$e_{a} = (2e_{1} + e_{3})$$

$$e_{tz} = \frac{2}{\sqrt{3}}(e_{3} - e_{1})$$

$$e_{1} = \frac{a/\sqrt{2} - a_{0}}{a_{0}}$$

$$e_{3} = \frac{c/2 - a_{0}}{a_{0}}$$

Equations for the symmetry-adapted tetragonal strain, e_{tz} , volumetric strain, e_a , and natural linear strain components e_1 and e_3 . a_0 is calculated from the pseudo cubic unit-cell volume of the tetragonal phase $(\sqrt{[3]}a_{pc}^2c_{pc})$ at each temperature. As $e_1 < 0$, $e_3 > 0$ and $e_3 \simeq 2|e_1|$, by definition $e_a = 0$ and $e_{tz} > 0$.

$$\cos(\alpha_{pc}) - \cos(\alpha_{pc})_{calc} = \left(\frac{2}{3}\right)\zeta \left[1 - \left(\frac{2}{3}\right)\sin^2\omega\right]^{-1}$$
$$\cos(\alpha_{pc})_{calc} = \frac{\sin^2\omega}{3 - 2\sin^2\omega}$$

Formulation for the octahedral strain ζ (equal to 0 in the undistorted, cubic phase). ω is the octahedral tilt angle in the rhombohedral phase.

$$V(T) = V_0 + \frac{9N\gamma_1k_BzT}{B_0} \left(\frac{T}{\Theta_{D1}}\right)^3 \int_0^{\frac{\Theta_{D1}}{T}} \frac{x^3dx}{e^x - 1} + \frac{9N\gamma_2k_B(1 - z)T}{B_0} \left(\frac{T}{\Theta_{D2}}\right)^3 \int_0^{\frac{\Theta_{D2}}{T}} \frac{x^3dx}{e^x - 1}$$
$$c_V(T) = 9Nk_Bz \left(\frac{T}{\Theta_{D1}}\right)^3 \int_0^{\frac{\Theta_{D1}}{T}} \frac{x^4e^xdx}{(e^x - 1)^2} + 9Nk_B(1 - z) \left(\frac{T}{\Theta_{D2}}\right)^3 \int_0^{\frac{\Theta_{D2}}{T}} \frac{x^4e^xdx}{(e^x - 1)^2}$$

Formulation of unit-cell volume and isochoric heat capacity as a function of temperature according to the two-term Debye approximation. V_0 is the unit-cell volume at zero temperature, N is the number of atoms, γ_n are the Grüneisen parameters, k_B is the Boltzmann constant, B_0 is the isothermal bulk modulus, z is the mixing coefficient for the two-term model, and θ_{Dn} are the Debye temperatures. In the present study the fitting was performed using the GlobalAnalysis package in IgorPro (©WaveMetrics), allowing for the global minimisation of both integrals against two physical datasets with shared fitting parameters.

$$M_i = \left(\frac{R_i N_i}{B}\right) exp\left[\left(\frac{R_0 - R_i}{B}\right)\right]$$

Formulation of M_i , the total estimated variation of bond valence in a polyhedral site due to the change of average bond distance. R_i is the average measured bond distance in the polyhedra, N_i is the coordination number in the polyhedra, R_0 is a constant for a particular atom pair and B is a universal constant (0.37), the values of which are given and defined in the work of Brown and Altermatt (Acta Cryst. B41, 244-247 (1985)) The relative values of M for the A site (M_A) and (M_B) give an indication of the relative compressibilities (full derivation and description is given in Zhao *et al* Acta Cryst B 60, 3, 263-272 (2004). For $M_A/M_B \ge 1$ the material will become more symmetric upon compression, $M_A/M_B \approx 1$ the distortion does not change with pressure and $M_A/M_B \le 1$ indicates that the distortion will increase with increasing pressure.

Table S2: Determined structural parameters of CsCaCl₃ with temperature. For the tetragonal structure the space-group is I4/mcm, Cs 4b, Ca 4c, Cl(1) 4a, Cl(2) $8h \frac{1}{4}+u, \frac{3}{4}+u, 0$. For $Pm\bar{3}m$; Wyckoff positions: Cs 1b, Ca 1a, Cl 3d For further details see main text

Temperature (K)	Phase	a(Å)	c(Å)	$V(Å^3)$	u
5	Tetragonal	7.7880(3)	10.7952(5)	621.57(7)	0.0233
25	Tetragonal	7.5864(3)	10.7968(5)	621.40(7)	0.02387
45	Tetragonal	7.5920(3)	10.7923(5)	622.06(7)	0.02197
65	Tetragonal	7.5970(3)	10.7846(6)	622.42(7)	0.0193
70	Tetragonal	7.6998(3)	10.7825(6)	622.77(6)	0.01777
80	Tetragonal	7.6033(4)	10.7787(8)	623.12(6)	0.01595
90	Tetragonal	7.6079(6)	10.7732(10)	623.56(6)	0.01323
100	Cubic	5.3836(2)	-	156.030(14)	-
120	Cubic	5.3848(2)	-	156.138(15)	-
140	Cubic	5.3869(2)	-	156.323(17)	-
160	Cubic	5.3888(2)	-	156.49(2)	-
180	Cubic	5.3902(2)	-	156.61(2)	-
200	Cubic	5.3923(3)	-	156.79)2)	-
220	Cubic	5.3941(3)	-	156.95(3)	-
240	Cubic	5.3962(3)	-	157.13(3)	-
260	Cubic	5.3991(3)	-	157.38(3)	-
280	Cubic	5.4004(3)	-	157.50(3)	-

Figure S1: Isobaric heat capacity as a function of temperature, collicted on warming from 4 K. There is a clear discontinuity at the expected transition temperature between 90 and 100 K.