Pressure and Temperature Phase Diagram of CsCaCl_{3}

SUPPLEMENTARY INFORMATION

Craig L Bull, ${ }^{a, b}$ Christopher J Ridley, ${ }^{a}$ Nicholas Funnell, ${ }^{a}$ Sumit Komar, ${ }^{b}$ and James Cumby ${ }^{b}$
${ }^{a}$ ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
${ }^{b}$ EastCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK

> *To whom correspondence should be addressed;
> E-mail: craig.bull@stfc.ac.uk

Submitted to J Mat Chem C

Table S1: Derived structural parameters for a perovskite in both cubic ($P \overline{3} \mathrm{~m}$) and tetragonal $(I 4 / \mathrm{mcm})$ symmetry, where $(\tan (\phi)=4 u)$ and u is the dispalcement of the x and y co-ordinate of the Cl atom in the tetragonal phase (after K. S. Knight et al, Physics and Chemistry of Minerals 41, 461 (2014))
Structural $\operatorname{Pm} \overline{3} m \quad I 4 / \mathrm{mcm}$

Parameter

$\mathrm{A}-\mathrm{X}(1)$	$\frac{a}{\sqrt{2}}$	$\frac{a}{2}$
$\mathrm{~A}-\mathrm{X}(2)$	-	$\frac{1}{4}\left[2 a^{2}\left(1-2 \phi+\phi^{2}-\frac{2}{3} \phi^{3}\right)+c^{2}\right]^{0.5}$
$\mathrm{~A}-\mathrm{X}(2)$	-	$\frac{1}{4}\left[2 a^{2}\left(1+2 \phi+\phi^{2}+\frac{2}{3} \phi^{3}\right)+c^{2}\right]^{0.5}$
$\mathrm{~B}-\mathrm{X}(1)$	$\frac{a}{2}$	$\frac{c}{4}$
$\mathrm{~B}-\mathrm{X}(2)$	-	$\frac{a}{2 \sqrt{2}}\left[1+\frac{1}{2} \phi^{2}+\frac{5}{24} \phi^{4}\right]$
AX_{n} volume	$\frac{5 a^{3}}{6}$	$\frac{a^{2} c}{24}\left[3-\phi-\frac{1}{3} \phi^{2}-\frac{2}{15} \phi^{5}-\frac{17}{315} \phi^{7}\right]$
BX_{6} volume	$\frac{a^{3}}{6}$	$\frac{a^{2} c}{24}\left[1+\phi^{2}+\frac{2}{3} \phi^{4}+\frac{17}{45} \phi^{6}+\frac{62}{315} \phi^{8}\right]$

$$
l_{p c}(T)=l_{p c 0}+\frac{A_{p c}}{\exp \left(\frac{B_{p c}}{T}\right)-1}
$$

Einstein internal energy model fitted to the pseudo-cubic lattice parameter $l_{p c}$ with temperature (T) using an Einstein temperature $\left(B_{p c}\right)$. For these models we find $a_{p c 0}=5.3650 \AA, A a_{p c}=0.0466 \AA, B a_{p c}=129.5 \mathrm{~K}$ and $c_{p c 0}=5.3981 \AA, A c_{p c}=-0.0431 \AA, B c_{p c}=140.7 \mathrm{~K}$.

$$
\begin{aligned}
e_{a} & =\left(2 e_{1}+e_{3}\right) \\
e_{t z} & =\frac{2}{\sqrt{3}}\left(e_{3}-e_{1}\right) \\
e_{1} & =\frac{a / \sqrt{2}-a_{0}}{a_{0}} \\
e_{3} & =\frac{c / 2-a_{0}}{a_{0}}
\end{aligned}
$$

Equations for the symmetry-adapted tetragonal strain, $e_{t z}$, volumetric strain, e_{a}, and natural linear strain components e_{1} and $e_{3} . a_{0}$ is calculated from the pseudo cubic unit-cell volume of the tetragonal phase $\left(\sqrt{[3]} a_{p c}^{2} c_{p c}\right)$ at each temperature. As $e_{1}<0, e_{3}>0$ and $e_{3} \simeq 2\left|e_{1}\right|$, by definition $e_{a}=0$ and $e_{t z}>0$.

$$
\begin{gathered}
\cos \left(\alpha_{p c}\right)-\cos \left(\alpha_{p c}\right)_{c a l c}=\left(\frac{2}{3}\right) \zeta\left[1-\left(\frac{2}{3}\right) \sin ^{2} \omega\right]^{-1} \\
\cos \left(\alpha_{p c}\right)_{c a l c}=\frac{\sin ^{2} \omega}{3-2 \sin ^{2} \omega}
\end{gathered}
$$

Formulation for the octahedral strain ζ (equal to 0 in the undistorted, cubic phase). ω is the octahedral tilt angle in the rhombohedral phase.

$$
\begin{gathered}
V(T)=V_{0}+\frac{9 N \gamma_{1} k_{B} z T}{B_{0}}\left(\frac{T}{\Theta_{D 1}}\right)^{3} \int_{0}^{\frac{\Theta_{D 1}}{T}} \frac{x^{3} d x}{e^{x}-1}+\frac{9 N \gamma_{2} k_{B}(1-z) T}{B_{0}}\left(\frac{T}{\Theta_{D 2}}\right)^{3} \int_{0}^{\frac{\Theta_{D 2}}{T}} \frac{x^{3} d x}{e^{x}-1} \\
c_{V}(T)=9 N k_{B} z\left(\frac{T}{\Theta_{D 1}}\right)^{3} \int_{0}^{\frac{\Theta_{D 1}}{T}} \frac{x^{4} e^{x} d x}{\left(e^{x}-1\right)^{2}}+9 N k_{B}(1-z)\left(\frac{T}{\Theta_{D 2}}\right)^{3} \int_{0}^{\frac{\Theta_{D 2}}{T}} \frac{x^{4} e^{x} d x}{\left(e^{x}-1\right)^{2}}
\end{gathered}
$$

Formulation of unit-cell volume and isochoric heat capacity as a function of temperature according to the two-term Debye approximation. V_{0} is the unit-cell volume at zero temperature, N is the number of atoms, γ_{n} are the Grüneisen parameters, k_{B} is the Boltzmann constant, B_{0} is the isothermal bulk modulus, z is the mixing coefficient for the two-term model, and $\theta_{D n}$ are the Debye temperatures. In the present study the fitting was performed using the GlobalAnalysis package in IgorPro (©WaveMetrics), allowing for the global minimisation of both integrals against two physical datasets with shared fitting parameters.

$$
M_{i}=\left(\frac{R_{i} N_{i}}{B}\right) \exp \left[\left(\frac{R_{0}-R_{i}}{B}\right)\right]
$$

Formulation of M_{i}, the total estimated variation of bond valence in a polyhedral site due to the change of average bond distance. R_{i} is the average measured bond distance in the polyhedra, N_{i} is the coordination number in the polyhedra, R_{0} is a constant for a particular atom pair and B is a universal constant (0.37), the values of which are given and defined in the work of Brown and Altermatt (Acta Cryst. B41, 244-247 (1985)) The relative values of M for the A site $\left(M_{A}\right)$ and $\left(M_{B}\right)$ give an indication of the relative compressibilities (full derivation and description is given in Zhao et al Acta Cryst B 60, 3, 263-272 (2004). For $M_{A} / M_{B} \geq 1$ the material will become more symmetric upon compression, $M_{A} / M_{B} \approx 1$ the distortion does not change with pressure and $M_{A} / M_{B} \leq 1$ indicates that the distortion will increase with increasing pressure.

Table S2: Determined structural parameters of CsCaCl_{3} with temperature. For the tetragonal structure the space-group is $I 4 / m c m$, $\mathrm{Cs} 4 b, \mathrm{Ca} 4 c, \mathrm{Cl}(1) 4 a, \mathrm{Cl}(2) 8 h \frac{1}{4}+u, \frac{3}{4}+u$, 0 . For $\operatorname{Pm} \overline{3} m$; Wyckoff positions: Cs $1 b, \mathrm{Ca} 1 a, \mathrm{Cl} 3 d$ For further details see main text

Temperature (K)	Phase	$\mathrm{a}(\AA)$	$\mathrm{c}(\AA \AA)$	$\mathrm{V}\left(\AA^{3}\right)$	u
5	Tetragonal	$7.7880(3)$	$10.7952(5)$	$621.57(7)$	0.0233
25	Tetragonal	$7.5864(3)$	$10.7968(5)$	$621.40(7)$	0.02387
45	Tetragonal	$7.5920(3)$	$10.7923(5)$	$622.06(7)$	0.02197
65	Tetragonal	$7.5970(3)$	$10.7846(6)$	$622.42(7)$	0.0193
70	Tetragonal	$7.6998(3)$	$10.7825(6)$	$622.77(6)$	0.01777
80	Tetragonal	$7.6033(4)$	$10.7787(8)$	$623.12(6)$	0.01595
90	Tetragonal	$7.6079(6)$	$10.7732(10)$	$623.56(6)$	0.01323
100	Cubic	$5.3836(2)$	-	$156.030(14)$	-
120	Cubic	$5.3848(2)$	-	$156.138(15)$	-
140	Cubic	$5.3869(2)$	-	$156.323(17)$	-
160	Cubic	$5.3888(2)$	-	$156.49(2)$	-
180	Cubic	$5.3902(2)$	-	$156.61(2)$	-
200	Cubic	$5.3923(3)$	-	$156.79) 2)$	-
220	Cubic	$5.3941(3)$	-	$156.95(3)$	-
240	Cubic	$5.3962(3)$	-	$157.13(3)$	-
260	Cubic	$5.3991(3)$	-	$157.38(3)$	-
280	Cubic	$5.4004(3)$	-	$157.50(3)$	-

Figure S1: Isobaric heat capacity as a function of temperature, colelcted on warming from 4 K . There is a clear discontinuity at the expected transition temperature between 90 and 100 K .

