Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Highly Efficient Narrowed Emitting AgIn_xGa_{1-x}S₂/AgGaS₂ Quantum Dots via HF-Assisted One-Pot Synthesis Strategy and Their Light-emitting Diodes

Zilong Li,^{ab} Sheng Cao,^{*ac} Kai Wang,^b Qiuyan Li,^{ac} Yuanjin Huang,^{ac} Hui Fu,^b Jialong Zhao,^{ac} Weiyou

Yang,^b and Jinju Zheng*^b

^a School of Resources, Environment, and Materials, State Key Laboratory of Featured Metal Materials

and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.

^b Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211,

China.

^c School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

* Corresponding author. E-mails: caosheng@gxu.edu.cn (S. Cao), zhengzhao2007@163.com (J. Zheng)

QDs	Year	FWHM [nm]	λ [nm]	PL QY [%]	Synthesis Method	Synthesis Step	ref
AIS/GaS _x	2018	28.6	585	28.8%	HU	two	1
AIS/GaS _x	2019	32	582	49.2%	HI	two	2
AIS/GaS _x	2022	~30	530-606	29%-40%	HI	two	3
AIS/GaS _x	2022	36	581	87.4%	HI	two	4
AIS/GaS _x /ZnS	2023	45	575	60%	HI	four	5
AIS/Ga-S-Se	2023	64	733	25	HI	two	6
AIS/AIGS/GS	2023	35	602	3%	HI	three	7
AIGS/GaS _x	2018	43-50	500-610	4%-28%	HU	two	8
AIGS/GaS _x	2021	32-42	498-602	28%-59%	HU	two	9
AIGS/GaS _x	2023	31-37	499-543	20%-75%	HI	two	10
AIGS/GaS _x	2023	31	532	55%	HI	two	11
AIGS/AGS	2023	30-55	468-610	50%-96%	HI	two	12
AIGS/Ga ₂ O ₃	2023	44	563	58%	HU	one	13
AIGS/AGS		33	532	45%	HI	one	This work

 Table S1. Performance summary of Ag-In-S QDs with narrow band emission.

HU: Heating Up / HI: Hot Injection

Figure S1. PL spectra of AIGS/AGS QDs with HF (3 wt%) treatment. PL spectra at different loading amounts (a) and PL spectra at different reaction temperatures (b) before AGS shell coating. The variation of PL QY of the AIGS/AGS QDs obtained at different loading amounts (c) and different reaction (d) temperatures.

Figure S2. The ratio of band-edge emission and defect emission in the PL spectra of AIGS/AGS QDs (a) and AIGS/AGS-HF QDs (b).

Figure S3. Size distribution histograms of (a) AIGS cores, (b) AIGS-HF cores, (c) AIGS/AGS QDs, and (d) AIGS/AGS-HF QDs.

Figure S4. HRTEM images of AIGS cores before (a) and after (b) prolonged electron beam irradiation.

Figure S5. High-angle annular dark-field TEM image and EDS elemental mapping of Ag (red), In (orange), Ga (blue), and S (violet) for AIGS/AGS QDs.

QDs	Ag	In	Ga	S	F
AIGS	20.2	16.3	23.3	40.2	0
AIGS-HF	20.4	16.2.	20.8	38.2	4.4
AIGS-HF (normalized)	21.3	16.9	21.8	40.0	/

Table S2. Composition ratios calculated from EDS data in atomic% in AIGS cores, AIGS-HF cores,

and normalized ratios of AIGS-HF cores excluding the F element.

Figure S6. Variation in FWHM (a), PL peak energy (b) and PL intensity (c) with temperature of AIGS/AGS QDs and AIGS/AGS-HF QDs.

Figure S7. PL decay curve of AIGS cores.

Table S3. PL decay components of AIGS cores, AIGS/AGS QDs, and AIGS/AGS-HF QDs.

Sample	PL peak (nm)	A ₁ (%)	$\tau_1(ns)$	A ₂ (%)	$\tau_{2}\left(ns ight)$	χ2	$\tau_{ave}\left(ns\right)$
AIGS cores	669	50	89	50	445	0.99	390
AIGS/AGS QDs	532	85	24	15	130	0.99	77
AIGS/AGS -HF QDs	532	72	40	28	150	0.99	105

Figure S8. CIE coordinate of EL of QLED and PL of AIGS/AGS-HF QDs.

Figure S9. Electroluminescence (EL) spectra of the QLED at various voltages.

QDs	EL [nm]	FWHM [nm]	EQE [%]	V _{on} [V]	L_{max} [cd A ⁻¹]	ref
AIS/GaS _x	570	44	0.54	2.8	60.3	14
AIGS/GaS _x	539	39		2.0	~10	15
AIGS/GaS _x	531	33	1.1	2.4	175	16
AIGS/GaS _x	529	32	1.5	2.4	57	11
AIGS/Ga ₂ O ₃	563	49	0.65	3.2	~50	13
AIGS/AGS	535	36	0.75	2.2	2747	This work

Table S4. Performance summary of green-QLEDs based on narrow-emitting I-III-VI QDs.

References

- T. Uematsu, K. Wajima, D. K. Sharma, S. Hirata, T. Yamamoto, T. Kameyama, M. Vacha, T. Torimoto and S. Kuwabata, Narrow Band-edge Photoluminescence from AgInS₂ Semiconductor Nanoparticles by the Formation of Amorphous III-VI Semiconductor Shells, *NPG Asia Mater.*, 2018, 10, 713-726.
- 2 W. Hoisang, T. Uematsu, T. Yamamoto, T. Torimoto and S. Kuwabata, Core Nanoparticle Engineering for Narrower and More Intense Band-edge Emission from AgInS₂/GaS_x Core/shell Quantum Dots. *Nanomaterials*, 2019, 9.
- 3 T. Thi Thu Huong, N. T. Loan, T. D. T. Ung, N. T. Tung, H. Han and N. Q. Liem, Systematic Synthesis of Different-sized AgInS₂/GaS_x Nanocrystals for Emitting the Strong and Narrow Excitonic Luminescence, *Nanotechnology*, 2022, **33**, 355704.
- 4 M. Tepakidareekul, T. Uematsu, T. Torimoto and S. Kuwabata, Encapsulation of AgInS₂/GaS_x Core/shell Quantum Dots in In-fumarate Metal-organic Frameworks for Stability Enhancement, *CrystEngComm*, 2022, 24, 3715-3723.
- 5 N. T. Loan, T. T. T. Huong, M. A. Luong, L. Van Long, H. Han, T. D. T. Ung and N. Q. Liem, Double-shelling AgInS₂ Nanocrystals with GaS_x/ZnS to Make Them Emit Bright and Stable Excitonic Luminescence, *Nanotechnology*, 2023, 34, 315601.
- 6 N. Krobkrong, T. Uematsu, T. Torimoto and S. Kuwabata, Emission Tuning of AgInS₂-based Core/shell Semiconductor Quantum Dots with Type-II and Quasi-type-II Band Alignments, *Jpn. J. Appl. Phys.*, 2023, **62**, 061003.
- 7 N. T. Loan, T. T. T. Huong, M. A. Luong, L. Van Long, H. Han, T. D. T. Ung and N. Q. Liem, Double-shelling AgInS₂ Nanocrystals with GaS_x/ZnS to Make Them Emit Bright and Stable Excitonic Luminescence, *Nanotechnology*, 2023, 34, 315601.
- 8 T. Kameyama, M. Kishi, C. Miyamae, D. K. Sharma, S. Hirata, T. Yamamoto, T. Uematsu, M. Vacha, S. Kuwabata and T. Torimoto, Wavelength-tunable Band-edge Photoluminescence of Nonstoichiometric Ag-In-S Nanoparticles via Ga³⁺ Doping, ACS Appl. Mater. Interfaces, 2018, 10,

42844-42855.

- 9 W. Hoisang, T. Uematsu, T. Torimoto and S. Kuwabata, Luminescent Quaternary Ag(InxGa1x)S2/GaSy Core/shell Quantum Dots Prepared Using Dithiocarbamate Compounds and Photoluminescence Recovery via Post Treatment, Inorg. Chem., 2021, 60, 13101-13109.
- 10 T. Uematsu, M. Tepakidareekul, T. Hirano, T. Torimoto and S. Kuwabata, Facile High-Yield Synthesis of Ag-In-Ga-S Quaternary Quantum Dots and Coating with Gallium Sulfide Shells for Narrow Band-edge Emission, Chem. Mater., 2023, 35, 1094-1106.
- 11 T. Uematsu, R. Izumi, S. Sugano, R. Sugano, T. Hirano, G. Motomura, T. Torimoto and S. Kuwabata, Spectrally Narrow Band-edge Photoluminescence from AgInS2-based Core/shell Quantum Dots for Electroluminescence Applications, Faraday Discuss., 2023, DOI: 10.1039/d3fd00142c.
- 12 H. J. Lee, S. Im, D. Jung, K. Kim, J. A. Chae, J. Lim, J. W. Park, D. Shin, K. Char, B. G. Jeong, J.-S. Park, E. Hwang, D. C. Lee, Y.-S. Park, H.-J. Song, J. H. Chang and W. K. Bae, Coherent Heteroepitaxial Growth of I-III-VI2 Ag(In,Ga)S2 Colloidal Nanocrystals with Near-unity Quantum Yield for Use in Luminescent Solar Concentrators, Nat. Commun., 2023, 14, 3779.
- 13 M. Tozawa, C. Miyamae, K. Akiyoshi, T. Kameyama, T. Yamamoto, G. Motomura, Y. Fujisaki, T. Uematsu, S. Kuwabata and T. Torimoto, One-pot Synthesis of Ag-In-Ga-S Nanocrystals Embedded in a Ga₂O₃ Matrix and Enhancement of Band-edge Emission by Na⁺ Doping, *Nanoscale Adv.*, 2023, 5, 7057-7066.
- 14 G. Motomura, K. Ogura, Y. Iwasaki, T. Uematsu, S. Kuwabata, T. Kameyama, T. Torimoto and T. Tsuzuki, Electroluminescence from Band-edge-emitting AgInS₂/GaS_x Core/shell Quantum Dots, *Appl. Phys. Lett.*, 2020, **117**, 091101.
- 15 G. Motomura, Y. Iwasaki, T. Kameyama, T. Torimoto, T. Uematsu, S. Kuwabata and T. Tsuzuki, Green Electroluminescence Generated by Band-edge Transition in Ag-In-Ga-S/GaS_x Core/shell Quantum Dots, *ITE Trans. on MTA*, 2021, 9, 222-227.
- 16 G. Motomura, T. Uematsu, S. Kuwabata, T. Kameyama, T. Torimoto and T. Tsuzuki, Quantum-Dot Light-emitting Diodes Exhibiting Narrow-Spectrum Green Electroluminescence by Using Ag-In-

Ga-S/GaS_x Quantum Dots, *ACS Appl. Mater. Interfaces*, 2023, **15**, 8336-8344.