Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Chemically driven dimensionality modulation on hybrid tin (II) halide perovskites

microcrystals

Raúl I. Sánchez- Alarcón¹, Omar E. Solís¹, María Cristina Momblona-Rincon¹, Teresa S. Ripolles^{*1}, Juan P. Martínez-Pastor¹, Rafael Abargues¹, Pablo P. Boix^{*2,1}

¹Instituto de Ciencia de los Materiales- Universidad de Valencia, Catedrático José Beltrán, 2, 46071, Valencia, Spain.

²Instituto de Tecnología Química, Instituto de Tecnología Química, Universitat Politècnica València-Consejo Superior de Investigaciones Científicas, Av. dels Tarongers, 46022 València, Spain.

Figure S1. PL and PLE spectra from 0D- TEA_4SnBr_6 and 2D- TEA_2SnBr_4 synthesized at different molar ratios [TEA]/[Sn²⁺], such as 0.3, 0.5, 0.75, 1, 2, 3, and 4.

Figure S2. ¹¹⁹Sn MAS- NMR measurements of 2D- TEA₂SnBr₄ samples carried out at high field.

Sample	Sn (at. %)	S (at. %)	X (Cl, Br, or I) (at. %)	S/Sn Ratio	X/Sn Ratio
[TEASnCl ₃][TEACl]	12.7	31.2	56.0	2.45	4.40
TEA ₂ SnBr ₄	14.5	29.6	56.0	2.04	3.86
TEA ₄ SnBr ₆	8.9	36.5	54.6	4.10	6.13
TEA ₂ SnI ₄	13.2	34.3	52.5	2.59	3.97

Table S1. EDS microanalysis of TEA based tin (II) halide microcrystals synthesized by HI method.

Molar ratio [TEA]/[Sn ²⁺]	$\lambda_{ex}(nm)$	λ_{em} (nm)	PLQY (%)
4	277	602	4.37
3	277	595	25.02
2	277	595	20.03
1	277	633	11.75
0.5	277	631	13.54
0.3	277	617	13.04
0.25	277	619	14.51
0.125	277	619	14.77

Table S2. PL wavelength emission and PLQY of 0D- [TEASnCl₃][TEACl] samples synthesised at different molar ratios [TEA⁺]/[Sn²⁺] by hot-injection approach at 160 °C.

Figure S3. PL and PLE spectra of 0D- [TEASnCl₃][TEACl] synthesized at different molar ratios of [TEA]/ [Sn²⁺], such as 0.125, 0.25, 0.3, 0.5, 1, 2, 3, and 4.

Figure S4. ¹¹⁹Sn MAS- NMR for 0D- [TEASnCl₃][TEACl] microcrystals measured at

different spinning rates.

Figure S5. ¹³C MAS- NMR spectra of 0D- [TEASnCl₃][TEACl] microcrystals samples.

Figure S6. XRD patterns (a) and PLQY and PL wavelength emission (b) of 2D- TEA₂SnI₄ samples synthesised at different molar ratio of precursors [TEA]/[Sn²⁺].

Figure S7. PL and PLE spectra of 2D- TEA_2SnI_4 synthesized at different molar ratios of $[TEA]/[Sn^{2+}]$, such as 0.3, 0.5, 1, 2, 3, and 4.

Molar ratio [TEA]/[Sn ²⁺]	λ_{ex} (nm)	λ _{em} (nm)	PLQY (%)
4	405	645	0.14
3	405	641	0.29
2	405	661	0.30
1	405	661	0.30
0.5	405	661	0.63
0.3	405	661	3.02

Table S3. PL wavelength emission and PLQY of 2D- TEA_2SnI_4 samples synthesised at different molar ratios of $[TEA]/[Sn^{2+}]$ by hot-injection approach at 160 °C.