Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Ce:(Lu,Sr)₃(Al,Si)₅O₁₂ transparent ceramics for high-power

white LEDs/LDs with ultra-high luminance saturation threshold

Xiyue Zhang,^a Pengfei Sang, ^a Cong Wei, ^a Shenghui Lin, ^a Jian Kang, ^b Yanbin Li, ^{a,b*}

Bingheng Sun, ^c Yang Li, ^d Farida A Selim, ^e Chunming Zhou, ^a Tianyuan Zhou, ^a

Shiwei Chen,^f Chaofan Shi,^b Wieslaw Stręk,^g Hao Chen,^{a,b*}and Le Zhang^{a,b,h*}

a Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and

Electronics Engineering, Jiangsu Normal University, Xuzhou, 221116, P.R. China

b Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology, Xuzhou, 221400,

P.R. China

c Shanghai Institute of Optics Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, P.R. China

d School of Material Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P.R. China

e Department of Physics and Astronomy, Bowling Green State University, Bowling Green, 43403, USA

f Xuzhou Kangna Advanced Materials Technology Co., Ltd, Xuzhou, 221400, P.R. China g Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, 50-422, Poland

h State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China * *To whom correspondence should be addressed*.

E-mail: zhangle@jsnu.edu.cn(Le Zhang); chenhao@jsnu.edu.cn(Hao Chen); lyb@jsnu.edu.cn (Yanbin Li)

Components	Color	Central	Luminous	Saturation	Year	Reference
	convertor	wavelengt	efficiency(excit	threshold		
		h	ed by LD)			
LuAG:Ce	PC	520 nm	216.9 lm/W	>19.75 W mm ⁻²	2021	1
LuAG:Ce/Al ₂ O ₃	PC	510nm	2831m/W	$>20.5 \text{ W mm}^{-2}$	2023	2
$Ba_{1.5}Lu_{1.5}Al_{3.5}Si_{1.5}O_{12}{:}Ce^{3+}$	PC	520 nm	/	/	2020	3
YLuAG:Ce	PC	519 nm	148 lm/W	/	2021	4
YAGG:Ce ³⁺	PIG	520nm	/	/	2021	5
LuAG:Ce-PiSG	PIG	510nm	/	$13.4 \text{ W} \text{ mm}^{-2}$	2022	6
β -Sialon:Eu ²⁺	PIG	540 nm	154 lm/W	$2.7 \text{ W} \text{ mm}^{-2}$	2021	7
LuAG:Ce	PIG	520 nm	225 lm/W	$4.3 \text{ W} \text{ mm}^{-2}$	2021	8
LuAG:Ce	PIF	520nm	/	21 W mm^{-2}	2022	9
β-Sialon:Eu ²⁺	PIF	520nm	/	15.49 W mm ⁻²	2022	10
YAGG:Ce ³⁺	PIF	530 nm	230 lm/W	39 W mm ⁻²	2019	11
γ -AlON: Mn ²⁺ ,Mg ²⁺	phosphor	510 nm	/	/	2019	12
CaY2ZrGaAl3O12:Ce3+	phosphor	514 nm	/	/	2023	13
Sr[Be ₆ ON ₄]:Eu ²⁺	phosphor	500 nm	/	/	2018	14
$Ba_9Sc_2Si_6O_{24}{:}Eu^{2+}$	phosphor	508 nm	/	/	2009	15

Table S1. Reports on commercial green phosphor material

* PC: phosphor ceramic, PIG: phosphor-in-glass, PIF: phosphor-in-glass film

- H. Ding, Z. Liu, P. Hu, Y. Liu, P. Sun, Z. Luo, X. Chen, H. Jiang and J. Jiang, Advanced Optical Materials, 2021, 9, 2002141.
- 2. Cheng Z, Liu X, Chen X, Xu J, Wang Y, Xie T, Wu L, Dai Z, Zhou G, Zou J, Li J, *Journal of Advanced Ceramics*, 2023, **12**, 625.
- 3. X. Li, C. Guo, H. Wang, Y. Chen, J. Zhou, J. Lin and Q. Zeng, *Ceramics International*, 2020, 46, 5863.
- J. Ling, W.-T. Xu, J. Yang, T. Mu, Y. Zhang, Y. Zhou and M. Hong, *Journal of the European Ceramic Society*, 2021, 41, 5967.
- 5. Peng Y, Sun Q, Liu J, Cheng H, Mou Y, Journal of Alloys and Compounds, 2021, 850, 156811.
- 6. Li Q, Xiao W, Zhang D, Wang D, Zheng G, Qiu J, Laser & Photonics Reviews, 2022, 16, 2200553.
- F. Xu, H. Yang, Y. Zhang, X. Liu, Y. Zhang, L. Wang, Z. Wang, X. Liang, P. Qian and W. Xiang, Journal of Alloys and Compounds, 2021, 887, 161301.
- L. Wang, H. Yang, Y. Zhang, Y. Liang, J. Zhang, E. Mei, F. Xu, J. Long, P. Yu and W. Xiang, *Journal of Alloys and Compounds*, 2022, 892, 161882.
- 9. Huang Q, Sui P, Huang F, Lin H, Wang B, Lin S, Wang P, Xu J, Cheng Y, Wang Y, *Laser & Photonics Reviews*, 2022, **16**, 2200040.
- 10. Chen H, Lin T, Huang F, Li S, Tang X, Xie R-J, Advanced Optical Materials, 2022, 10, 2200836.
- J. Liu, L. Wang, S. Bao, L. Xu, Y. Wang, Q. Wen, J. Zheng, X. Liang, J. Kang and W. Xiang, *Ceramics International*, 2023, 49, 18836.
- 12. Q. Dong, F. Yang, J. Cui, Y. Tian, S. Liu, F. Du, J. Peng and X. Ye, *Ceramics International*, 2019, 45, 11868.
- 13. L. Cao, Z. Xu, J. Chan, B. Devakumar and X. Huang, *Journal of Luminescence*, 2023, 263, 120015.
- P. Strobel, T. de Boer, V. Weiler, P. J. Schmidt, A. Moewes and W. Schnick, *Chemistry of Materials*, 2018, 30, 3122.

15. T. Nakano, Y. Kawakami, K. Uematsu, T. Ishigaki, K. Toda and M. Sato, *Journal of Luminescence*, 2009, **129**, 1654.

Fig. S1 SEM images of raw material powders: (a) Al₂O₃, (b) Lu₂O₃, (c) SrCO₃, (d) SiO₂. (e) Particle size distribution of Sr05 precursor powders

Fig. S2 TG/DSC curves of SrCO₃ powders

Fig. S3 Optical microscope image of Sr05 TC

Fig. S4 EDS elemental mapping images of Sr05 TC

Fig. S5 The emission intensity and temperature Arrhenius fitting of (a) Sr00 and (b) Sr05 TC

$$I(T) = \frac{I_0}{1 + Cexp\left(\frac{-\Delta E}{KT}\right)} \qquad Eq.S1$$

where I_0 and I_T represent the emission intensity at room temperature (RT) and operating temperature respectively, C is a constant and K is boltzmann constant (8.617×10⁻⁵ eV/K).

Fig. S6 Temperature-dependent PL spectra of (a) Sr00, (b) Sr025, (c) Sr05, (d) Sr075, (e) Sr10 TC under 460 nm excitation in the temperature range of 298-573 K

Fig. S7 Thermal conductivities of the Ce:LSASG at 50 °C

Sample	CRI	ССТ
Sr00	48.5	5297
Sr025	47.7	5297
Sr05	48.1	5260
Sr075	47.3	5297
Sr10	46.1	5550

Table S2 The detailed CCT and CRI values of Ce: LSASG TCs

Fig. S8 A schematic of the designed white LD device

Fig. S9 Infrared thermal images and surface temperatures of (a) Sr05 and (b) Sr10 TC based LDs

Fig. S11 The summarize of reported Saturation threshold of white LD source based on single structured phosphor ceramics