Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Dandan Zhang^{a,1}, Yangfan Cui^{b,1}, Miao Zhang^{c,*}, Xin Chen^{b,*} and Hui Wang^{a,*}

*Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

^bLaboratory of High-Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China

^cDepartment of Physics, School of Sciences, Beihua University, Jilin 132013, China.

¹These authors contribute equally

*E-mail addresses: zhangmiaolmc@126.com; chenxin@qfnu.edu.cn; wh@fysik.cn

Contents

- 1. Computational details.
- 2. The COHP curves and ELF distributions.
- 3. The phonon dispersion curves.
- 4. The electronic band structure, transport properties and ZT values for SrB₈C₂ at 20 GPa.
- 5. The detailed structure information and the possible synthesis pathways for SrB₅C₅, SrB₇C₃, SrB₈C₂ and SrB₉C.
- 6. The calculated elastic constants, Bader charges for SrB₇C₃, SrB₈C₂ and SrB₉C.
- 7. The effective mass, elastic constant, DP constant and relaxation time for SrB₈C₂.

1. Computational details

We have extensively explored the structures of SrB_xC_{10-x} (x=1-9) at pressures of 0-20 GPa. The formation enthalpy is defined as $\Delta H/11 = H(SrB_xC_{10-x}) - H(Sr) - xH(B) - (10-x)H(C)$ in unit of eV/atom. $H(SrB_xC_{10-x})$ is the enthalpy of SrB_xC_{10-x} . H(Sr), H(B) and H(C) are the enthalpies of elemental Sr, B and C solids, respectively. The *Fm*-3*m* and *Im*-3*m* phases of elemental Sr (phase transition pressure is 5.7 GPa), the *R*-3*m* phase of elemental B and the *Fd*-3*m* structure of elemental C are used in the calculation. In addition, the *C*2/*m* and *P*6₃/*mmc* SrB (phase transition pressure is 7.3 GPa), *Immm* SrB₂, *R*-3*m* SrB₄, *Pm*-3*m* SrB₆, *I*4/*mmm* and *C*2/*m* SrC₂ (phase transition pressure is 6.3 GPa) are used to calculate the synthesis pathways. All DFT-GGA calculations were performed for SrB₅C₅, SrB₇C₃, SrB₈C₂, and SrB₉C compounds with atoms numbers of 11, 22, 44, and 44, respectively, which are primitive cells.

2. The COHP curves and ELF distributions.

Fig. S1 The COHP curves at 0 GPa for (a) SrB₅C₅, (b) SrB₇C₃ and (d) SrB₉C using PBE functional, and (c) SrB₈C₂ by HSE06 functional.

Fig. S2 The ELF distributions for (a) SrB_5C_5 , (b) SrB_7C_3 , (c) SrB_8C_2 and (d) SrB_9C at ambient pressure (The yellow isosurface represents an ELF value of 0.80).

3. The phonon dispersion curves.

Fig. S3 The phonon dispersion curves for SrB_5C_5 at (a) 0 GPa and (b) 20 GPa.

Fig. S4 The phonon dispersion curves for SrB₇C₃ at (a) 0 GPa and (b) 20 GPa.

Fig. S5 The phonon dispersion curves for SrB_8C_2 at (a) 0 GPa and (b) 20 GPa.

Fig. S6 The phonon dispersion curves for SrB₉C at (a) 0 GPa and (b) 20 GPa.

4. The electronic band structure, transport properties and ZT values for SrB₈C₂ at 20 GPa.

Fig. S7 The electronic band structure of SrB_8C_2 calculated by HSE06 functional at 20 GPa (the bandgap is 0.17 eV, and this value is used to calculate the transport properties).

Fig. S8 The transport properties of SrB₈C₂ as a function of carrier concentration between 300 and 800 K at 20 GPa. (a, b) Seebeck coefficients, (c, d) electrical conductivity and (e, f) power factor.

Fig. S9 The (a) *p*-type and (b) *n*-type ZT values for SrB₈C₂ between 300 and 800 K at 20 GPa.

5. The detailed structure information and the possible synthesis pathways for SrB₅C₅, SrB₇C₃, SrB₈C₂ and SrB₉C.

	Space	Volume	Lattice		Atomic
	group	per unit	parameters		positions
				Sr	2a (0,0,0.58356)
			0 100 Å	В	4 <i>c</i> (0.25,0.25,0.19784)
			a = 8.109 A, b = 5.172 Å	В	2b (0,0.5,0.20458)
SrB5C5	Cmm2	100.0 Å ³	D = 3.173 A	В	4 <i>d</i> (0.67644,0,0.71311)
			c = 4.700 A	С	4 <i>c</i> (0.25,0.25,0.8757)
			$\alpha - \rho - \gamma - 90.0$	С	2 <i>b</i> (0,0.5,0.8801)
				С	4 <i>d</i> (0.67653,0,0.36699)
				Sr	2a (0.59367,0.46204,0.33407)
				В	2a (0.79982,0.6514,0.82655)
	<i>P</i> 2 ₁	95.3 Å ³		В	2a (0.96201,0.31936,0.06623)
			<i>a</i> = 5.114 Å	В	2a (0.88196,0.13853,0.85647)
			<i>b</i> = 8.216 Å	В	2a (0.57058,0.13715,0.21969)
SrB7C3			c = 4.898 Å	В	2a (0.61191,0.82162,0.23853)
			$\alpha = \gamma = 90.0^{\circ}$	В	2a (0.84074,0.97401,0.32316)
			$\beta = 112.12^{\circ}$	В	2a (0.91586,0.76771,0.54251)
				С	2a (0.86218,0.14404,0.51885)
				С	2a (0.35779,0.73361,0.04503)
				С	2a (0.99374,0.98445,0.08073)
				Sr	4 <i>a</i> (0,0,0)
S-D C	D~ 2	00 2 83	a = b = c = 7.325 Å	В	24 <i>d</i> (0.62818,0.60976,0.43442)
SrB_8C_2	Pa-3	98.2 A ³	$\alpha = \beta = \gamma = 90.0^{\circ}$	В	8c (0.77309,0.77309,0.77309)
				С	8c (0.64678,0.64678,0.64678)
				Sr	4c (0,0.5,0)
			a = b = 5.981 Å	В	16k (0.90284,0.80307,0.18249)
SrB ₉ C	P4/nnc	97.6 Å ³	c = 10.912 Å	В	16k (0.40453,0.30215,0.82196)
			$\alpha = \beta = \gamma = 90.0^{\circ}$	В	4 <i>e</i> (0,0,0.92363)
				С	4e (0,0,0.57366)

Table S1 Detailed crystal structure information for SrB₅C₅, SrB₇C₃, SrB₈C₂ and SrB₉C at ambient pressure.

	Synthesis pathways	ΔH with respect to diamond carbon (meV/atom)
	Sr+5B+5C	-16
	SrB+4B+5C	-52
	$SrB_2+3B+5C$	-129
	SrB ₄ +B+5C	-197
SrB5C5	SrC ₂ +5B+3C	-74
	(SrB+SrC ₂ +9B+8C)/2	-127
	(SrB ₂ +SrC ₂ +8B+8C)/2	-203
	(SrB4+SrC2+6B+8C)/2	-271
	(SrB ₆ +SrC ₂ +8B+8C)/2	-444
	Sr+7B+3C	-111
	SrB+6B+3C	43
	$SrB_2+5B+3C$	-34
	SrB ₄ +3B+3C	-102
	SrB ₆ +B+3C	-275
SrB ₇ C ₃	SrC ₂ +7B+C	21
	(SrB+SrC ₂ +13B+4C)/2	64
	(SrB ₂ +SrC ₂ +12B+4C)/2	-13
	(SrB ₄ +SrC ₂ +10B+4C)/2	-80
	(SrB ₆ +SrC ₂ +8B+4C)/2	-254
	Sr+8B+2C	-106
	SrB+7B+2C	37
	$SrB_2+6B+2C$	-39
SrB_8C_2	$SrB_4+4B+2C$	-107
	SrB ₆ +2B+2C	-28
	SrC ₂ +8B	15
	(SrB+SrC ₂ +15B+2C)/2	52

Table S2 Formation enthalpies of SrB₅C₅, SrB₇C₃, SrB₈C₂ and SrB₉C within different synthesis pathways at 20 GPa.

	$(SrB_2+SrC_2+14B+2C)/2$	-24
	$(SrB_4+SrC_2+12B+2C)/2$	-92
	$(SrB_6+SrC_2+10B+2C)/2$	-265
	Sr+9B+C	-95
	SrB+8B+C	26
	SrB ₂ +7B+C	-50
	SrB ₄ +5B+C	-118
SrB ₉ C	SrB ₆ +3B+C	-291
	(SrB+SrC ₂ +17B)/2	31
	(SrB ₂ +SrC ₂ +16B)/2	46
	$(SrB_4+SrC_2+14B)/2$	-114
	(SrB ₆ +SrC ₂ +12B)/2	-286

6. The calculated elastic constants, moduli and Bader charges for SrB₇C₃, SrB₈C₂ and SrB₉C.

Table S3 The calculated elastic constants (C_{ij}), bulk modulus (B), shear modulus (G), Young's modulus (Y), Pugh ratio (G/B) and simulated hardness values (H_v) by employing three different empirical model for SrB₇C₃, SrB₈C₂ and SrB₉C compounds at 20 GPa. The units of C_{ij} , B, G, Y, and H_v are GPa.

SrB7C3	C_{11}	C_{22}	<i>C</i> ₃₃	C_{44}	C55	C_{66}	C_{12}	C_{13}	C_{23}	C_{15}
	505.5	576.0	549.0	236.8	212.6	231.9	138.4	161.0	139.6	51.6
	C_{25}	C_{35}	C_{46}	В	G	Y	G/B	H_{ν}^{Chen}	H_v^{Tian}	H_v^{Teter}
	8.9	-11.3	30.1	277.7	212.7	508.4	0.77	30.7	30.2	32.1
SrB ₈ C ₂	C_{11}	C_{44}	C_{12}	В	G	Y	G/B	H_{v}^{Chen}	H_v^{Tian}	H_v^{Teter}
	497.2	206.6	140.0	259.1	194.9	467.4	0.75	28.3	27.8	29.4
	C_{11}	<i>C</i> ₃₃	C_{44}	C_{66}	C_{12}	C_{13}				
SrB ₉ C	466.7	655.6	216.2	219.2	165.8	106.9				
				В	G	Y	G/B	$H_v^{\rm Chen}$	H_v^{Tian}	H_v^{Teter}
				259.7	207.7	491.9	0.80	31.9	31.2	31.4

Table S4 The Bader charges for SrB7C3, SrB8C2 and SrB9C compounds at ambient pressure.

	Atom	Atom numbers	Charge value (e)	δ (e)
	Sr	2	8.57	+1.43
SrB7C3	В	14	2.25	+0.75
	С	6	6.22	-2.22
	Sr	4	8.45	+1.55
SrB_8C_2	В	32	2.57	+0.43
	С	8	6.48	-2.47
	Sr	4	8.60	+1.40
SrB ₉ C	В	36	2.98	+0.02
	С	4	5.59	-1.59

7. The effective mass, elastic constant, DP constant and relaxation time for SrB₈C₂.

Carrier type	$ m^* /m_0$	$C (eV/Å^3)$	E (eV per strain)
Electron	0.76	10.6	23.94
Hole	1.66	10.6	25.55

Table S5 The corresponding effective mass m^* , elastic constant C and DP constant E at 0 GPa are listed.

Table S6 The carrier relaxation time for the SrB₈C₂ at 0 GPa.

		300 K	400 K	500 K	600 K	700 K	800 K
τ (10 ⁻¹⁴ s)	CBM	2.97	1.93	1.38	1.05	0.83	0.68
	VBM	8.41	5.46	3.91	2.98	2.36	1.93

Table S7 The corresponding effective mass m^* , elastic constant C and DP constant E at 20 GPa are listed.

Carrier type	$ m^* /m_0$	$C (eV/Å^3)$	E (eV per strain)
Electron	0.79	14.6	25.38
Hole	1.52	14.6	27.70

Table S8 The carrier relaxation time for the SrB_8C_2 at 20 GPa.

		300 K	400 K	500 K	600 K	700 K	800 K
$\tau (10^{-14} s)$	CBM	4.17	2.71	1.94	1.47	1.17	0.96
	VBM	9.36	6.08	4.35	3.31	2.63	2.15