Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

A novel fluorescent chemosensor enables dual-channel selective "turn-on" detection of Hg^{2+} and Ag^{+} via distinct thiophilic effects, essential mechanisms, and excellent sensing performance for mercury(II) in aggregated states

Zhijun Ruan*, Xinyi Dong, Tao Long*, Shanshan Liu, Yanmei Chen, Junqi Lin*

Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China

Experimental section

1. Material

Dichloromethane (DCM) and tetrahydrofuran (THF) was dried over and distilled from CaH₂. Triphenylamine (TPA), terephthaloyl dichloride, 1, 2-ethanedithiol, aluminum chloride (AlCl₃) and all the other reagents were purchased from commercial suppliers and directly used without further purification. Various inorganic salt: Hg(ClO₄)₂ 3H₂O, AgNO₃, LiNO₃, NaNO₃, KNO₃, Co(NO₃)₂ 6H₂O, Cu(NO₃)₂ 3H₂O, Pb(NO₃)₂, Cd(NO₃)₂ 4H₂O, Ba(NO₃)₂, Ca(NO₃)₂ 4H₂O, Mg(ClO₄)₂, Fe(ClO₄)₂, Zn(NO₃)₂ 6H₂O, Mn(NO₃)₂ 4H₂O, Ni(NO₃)₂ 6H₂O, Al(NO₃)₃ 9H₂O, Fe(NO₃)₃ 9H₂O and Cr(NO₃)₃ 9H₂O was dissolved in ultra-pure water to afford 1×10⁻¹ mol/L aqueous solution, respectively.

2. Instrumentation

¹H and ¹³C NMR spectroscopy were recorded in CDCl₃ or THF- d_8 with a Varian Mercury 300 or Bruker ARX400 spectrometer using Me₄Si (TMS; $\delta = 0$ ppm) as internal standard. Fourier transform infrared (FTIR) spectra were recorded on a Nicolet NEXUS-6700 FTIR spectrophotometer in the region of 400–4000 cm⁻¹. EI-MS spectrum was performed with a Finnigan PRACE mass spectrometer. Elemental analysis (EA) was conducted by a CARLOERBA-1106 micro-elemental analyzer. UV-Vis spectra were collected by using a Shimadzu UV-2600 spectrometer. Photoluminescence spectra were conducted on a Hitachi F-4700 spectrophotometer. The quantum yield was gained by a reference method with 9,10-Diphenylanthracene ($\lambda_{\rm ex} = 366$ nm, $\phi_{\rm F} = 0.95$) as the standard compound. Density functional theory (DFT) calculations were carried out based on the B3LYP/6-31G(d) basis set. Single crystals of **DTPAO** (CCDC 1876442) and **DTPAS** (CCDC 2267083) were obtained from DCM/n-hexane mixture and were then tested by X-ray crystallography.

The crystal analysis was performed over a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized MoK_{α} radiation ($\lambda = 0.71073$ Å).

3. Fluorescence emission changes with different metal ions

To optimize the sensing performance of the probe, the effect of probe concentration of 10, 20 and 100 μ M was investigated. Taking the detection of Ag⁺ as an example, the employ of 20 μ M **DTPAS** gave the highest linearity (R² = 0.996), the maximum linear ranges (0 to 50 μ M) and the best fluorescence enhancement efficiency (41.2-fold) compared to the other two concentrations. Therefore, 20 μ M was selected as the optimal concentration of probe.

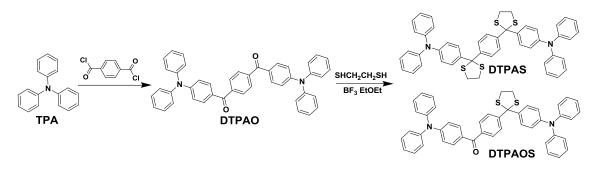
Testing in pure solution: a solution of **DTPAS** (2 × 10⁻⁵ mol/L) in THF was prepared, then various metal ions (1 × 10⁻¹ M, 18 μ L) were added to the solution of **DTPAS** respectively. The resultant solutions (3 mL) were placed in a quartz cell (10.0 mm width) at room temperature, and the changes of the PL intensity were recorded each time (excitation wavelength 380 nm). Testing in aggregated state: different metal ions (1 × 10⁻¹ M, 18 μ L) were added to the solution of 60 μ L **DTPAS** (1 × 10⁻³ M in THF) respectively, then distilled water was added to generate aggregated nanoparticles (with $f_w = 98\%$). The changes of the PL spectra were recorded each time at room temperature (excitation wavelength 380 nm).

4. UV-Vis absorption spectra changes with different metal ions

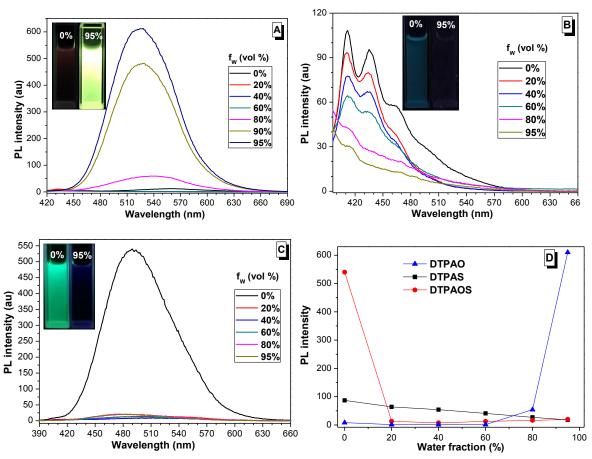
Solution of **DTPAS** (2 × 10⁻⁵ mol/L) in THF was prepared, then various metal ions (1 × 10⁻¹ M, 18 μ L) were added to the solution of **DTPAS** respectively. The resultant solutions (3 mL) were placed in a quartz cell (10.0 mm width) at room temperature, and the changes of the UV-Vis absorption spectra were recorded each time.

5. Synthesis and characterization

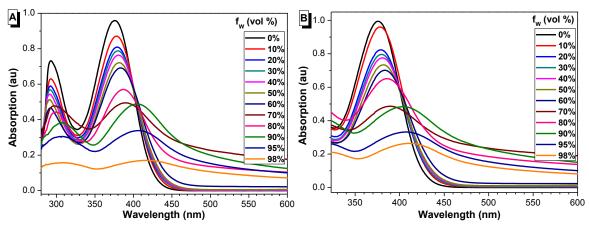
5.1 Synthesis of 1,4-phenylenebis((4-(diphenylamino)phenyl)methanone) (**DTPAO**)

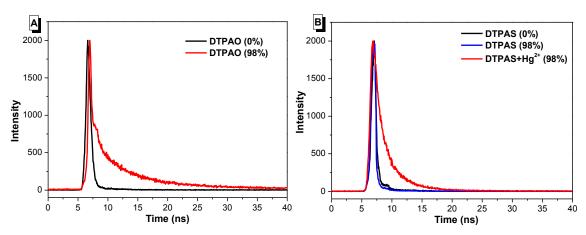

Triphenylamine (2.45 g, 10 mmol) and fully ground powder of anhydrous aluminum chloride (AlCl₃) (1.33 g, 10 mmol) were dissolved in 40 mL dry DCM, then terephthaloyl dichloride (1.02 g, 5 mmol) was added to the resultant suspension under stirring. After stirring for 24 h at 60 °C, the reaction mixture was washed with saturated brine and extracted three times with DCM (3 × 60 mL), and dried over anhydrous Na₂SO₄. Then the organic solvent was evaporated under vacuum, and the residue was purified by column chromatography over silica gel using CH₂Cl₂–petroleum ether (6:1, v/v) mixture as eluent to afford a light yellow solid (1.92 g, 62%, m.p. 139–141 °C). FTIR (thin film), v (cm⁻¹): 3036, 2923, 1649, 1584, 1554, 1489, 1311, 1274, 1153, 926, 865, 751, 695. ¹H NMR (300 MHz, CDCl₃): 7.82 (s, 4H, ArH), 7.73 (d, J = 9.0, 4H, ArH), 7.36 (m, 8H, ArH), 7.20 (m, 12H, ArH), 7.02 (d, J = 6.0, 4H, ArH). ¹³C NMR (75 MHz, CDCl₃): 194.5, 152.3, 146.3, 141.1, 132.1, 129.7, 129.3, 128.9, 126.2, 124.9, 119.3. MS (EI): calcd for 620.2; found: 620.5. Anal. calcd for C₄₄H₃₂N₂O₂: C 85.14, H 5.20, N 4.51; found: C 84. 89, H 5.02, N 4.48.

5.2 Synthesis of (4-(diphenylamino)phenyl)(4-(2-(4-(diphenylamino)phenyl)-1,3-dithiolan-2-yl) phenyl)methanone (**DTPAOS**)


Compound **DTPAO** (0.62 g, 1 mmol) and 1, 2-ethanedithiol (0.17 mL, 2 mmol) were dissolved in 15 mL dry DCM, then BF₃ Et₂O (0.50 mL, 4 mmol) as the Lewis acid was added. After stirring overnight at room temperature, aqueous NaHCO₃ was added to the reaction mixture to adjust the pH value of 8–9. The resultant solution was extracted with DCM for three times (3 × 40 mL) and dried over anhydrous Na₂SO₄. Then the organic solvent was evaporated under vacuum, and the residue was purified by column chromatography over silica gel using CH₂Cl₂–petroleum ether (2:1, v/v) mixture as eluent to afford a light yellow solid (0.49 g, 70%, m.p. 119–121 °C). FTIR (thin film), v

(cm⁻¹): 2955, 2924, 2853, 1646, 1583, 1488, 1310, 1273, 1176, 930, 753, 695. ¹H NMR (300 MHz, CDCl₃): 7.76 (m, 6H, ArH), 7.40 (m, 6H, ArH), 7.25 (m, 14H, ArH), 7.08 (m, 6H, ArH), 3.53 (m, 4H, -SCH₂-). ¹³C NMR (75 MHz, CDCl₃): 194.7, 152.0, 148.9, 147.4, 147.0, 146.5, 136.8, 132.0, 129.7, 129.4, 129.3, 129.0, 128.1, 126.0, 124.7, 123.2, 122.2, 119.3, 76.4, 40.3. MS (EI): calcd for 696.2; found: 695.8. Anal. calcd for C₄₆H₃₆N₂OS₂: C 79.28, H 5.21, N 4.02; found: C 78.95, H 5.39, N 4.11. 5.3 Synthesis of 4,4'-(2,2'-(1,4-phenylene)bis(1,3-dithiolane-2,2-diyl))bis(N,N-diphenylaniline) (DTPAS)


DTPAS was prepared via the same procedure to that of **DTPAOS** with adjusted feed ratio, 1 mmol **DTPAO**, 4 mmol 1, 2-ethanedithiol and 8 mmol BF₃ Et₂O. The crude product was purified by column chromatography over silica gel using CH₂Cl₂-petroleum ether (1:1, v/v) mixture as eluent to afford a pale solid (0.35 g, 36%, m.p. 243–245 °C). FTIR (thin film), v (cm⁻¹): 3032, 2922, 2850, 1589, 1493, 1313, 1274, 1179, 1018, 753, 695. ¹H NMR (300 MHz, THF- d_8): 7.54 (s, 4H, ArH), 7.44 (d, J = 9.0, 4H, ArH), 7.22 (t, J = 6.0, 8H, ArH), 7.06 (d, J = 6.0, 8H, ArH), 7.00 (t, J = 6.0, 4H, ArH), 6.91 (d, J = 6.0, 4H, ArH), 7.02 (d, J = 6.0, 4H, ArH), 3.58 (m, 8H, -SCH₂-). ¹³C NMR (75 MHz, THF- d_8): 147.7, 146.8, 143.7, 137.8, 129.3, 129.1, 127.8, 124.4, 122.9, 121.9, 76.4, 39.9. MS (EI): calcd for 772.2; found: 772.6. Anal. calcd for C₄₈H₄₀N₂S₄: C 74.57, H 5.22, N 3.62; found: C 74.28, H 5.33, N 3.47.


Scheme S1. Synthetic pathway of DTPAS and DTPAOS.

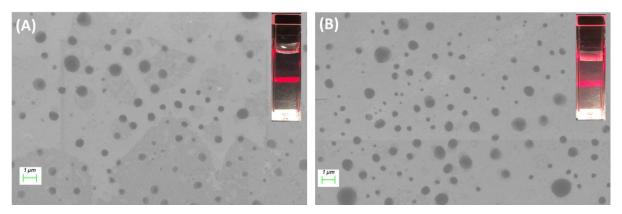

Fig. S1 PL spectra of **DTPAO** (a), **DTPAS** (b) and **DTPAOS** (c) in THF/H₂O mixtures (20 μ M) with different water fractions. Inset: Photos of luminogens in THF/H₂O mixtures taken under the illumination of a 365 nm UV lamp. (d) Changes of PL peak intensity with water fractions.

Fig. S2 UV-Vis spectra of **DTPAO** (a) and **DTPAS**+Hg²⁺ (b) in THF/H₂O mixtures with different water fractions.

Fig. S3 Time-resolved photoluminescence spectra of **DTPAO** (a), **DTPAS** and **DTPAS**+Hg²⁺ (b) with water fractions as 0% and 98%.

Fig. S4 Scanning electron microscopy and image of the Tyndall effect of **DTPAO** (a), **DTPAS**+Hg²⁺ (b) with water fractions as 98%.

Table S1 Photophysical data of DTPAO, DTPAOS and DTPAS.

Sample	$\lambda_{\max,}$ $(nm)^a$	$PL \lambda_{em}$ (nm)	$\Phi_{\mathrm{F}}\left(\% ight)^{a}$	$\Phi_{\mathrm{F}}\left(\% ight)^{b}$	$\Phi_{\mathrm{F}}\left(\% ight)^{c}$	Lifetime (ns) ^a	Lifetime (ns) ^b
DTPAO	292, 376	$562^a, 525^b$	3.6	36.4	38.2	5.4	10.5
DTPAOS	296, 364	491^{a}	45.2	0.6	1.3	12.6	3.9
DTPAS	307	$412, 435^a$	0.9	0.2	0.3	4.3	2.2

^a Photophysical data determined in THF (20 μ M); ^b determined in THF-water mixtures ($f_w = 98\%, 20 \mu$ M); ^c determined in solid state.

Table S2 Summary of crystal data and intensity collection parameters for DTPAO and DTPAS.

Compound	DTPAO	DTPAS		
Formula	$C_{44}H_{32}N_2O_2 \cdot 1/2(C_6H_{14})$	$C_{48}H_{40}N_2S_4$		
Formula mass	663.80	773.06		
Wavelength/Å	0.71073	1.54178		
Temperature/K	273(2)	296(2)		
Space group	Triclinic, P-1	Monoclinic, C2/c		
a/Å	10.429(4)	45.1405(16)		
b/Å	11.065(4)	7.6554(3)		
c/Å	15.589(5)	11.8691(5)		
α/o	93.724(6)	90.00		
β/°	102.674(6)	104.164(4)		
γ/°	90.425(6)	90.00		
V / Å ³	1750.9(10)	3976.9(3)		
Z/mg.m ⁻³	2, 1.259	4, 1.291		
F000	702	1624		
Theta range/o	1.342 to 24.820	2.019 to 68.336		
No. of collected reflns	12103	12926		
No. of unique reflns.	5932	3469		
Rint	0.0439	0.0594		
Data/restrains/parameters	5932/0/461	3469/0/244		
R1,wR2[obs I>2σ(I)]	R1 = 0.0633, $wR2 = 0.1832$	R1 = 0.0438, $wR2 = 0.1137$		
R1,wR2 (all data)	R1 = 0.0962, $wR2 = 0.2235$	R1 = 0.0645, $wR2 = 0.1253$		
Residual peak/hole e. Å ⁻³	0.866 and -0.277	0.164 and -0.229		
CCDC number	1876442	2267083		

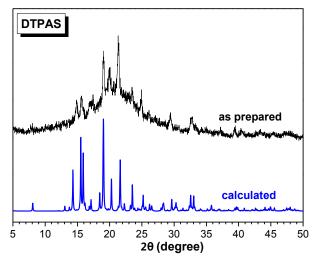


Fig. S5 XRD of the as-prepared solid of DTPAS and its calculated PXRD pattern.

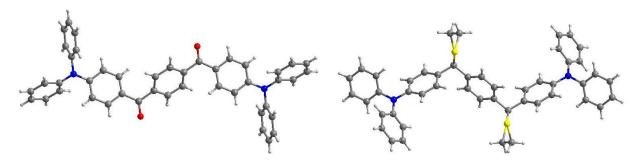


Fig. S6 Molecular structures of DTPAO and DTPAS in the single crystal.

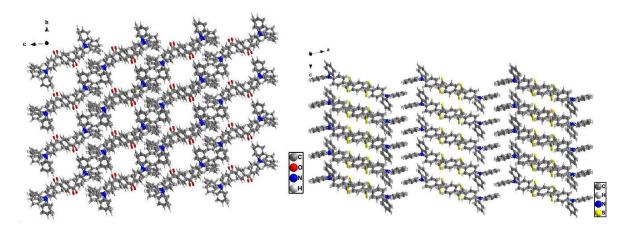


Fig. S7 Molecular packing mode of DTPAO and DTPAS crystals.

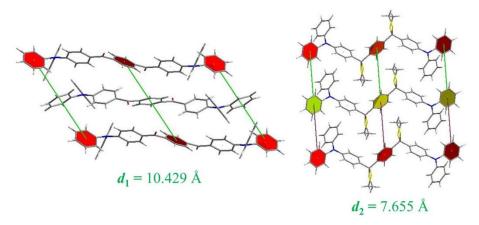
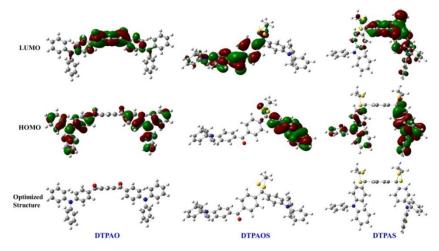



Fig. S8 The $\pi\!\!-\!\!\pi$ distances for DTPAO (left) and DTPAS (right).

Fig. S9 Calculated molecular orbital amplitude plots of HOMO and LUMO levels and optimized molecular structures of **DTPAO**, **DTPAOS** and **DTPAS**.

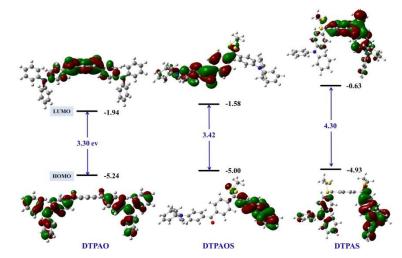


Fig. S10 HOMO, LUMO and corresponding energy gaps of DTPAO, DTPAOS and DTPAS based on optimized molecular structures.

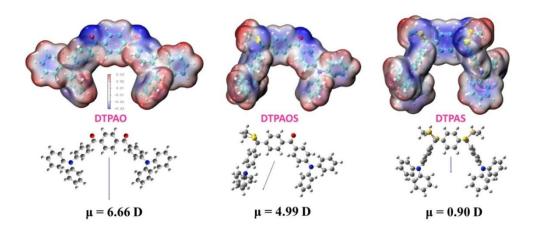
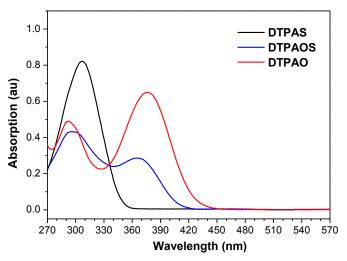
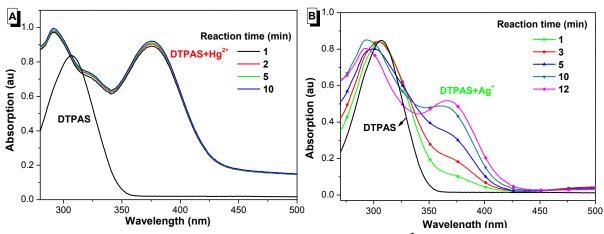
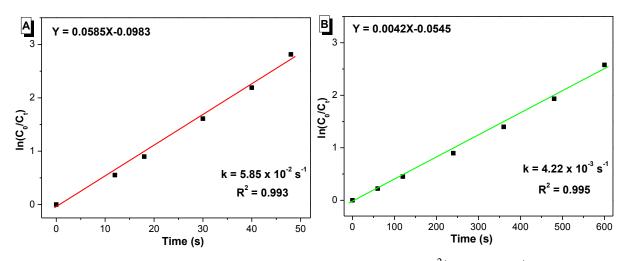
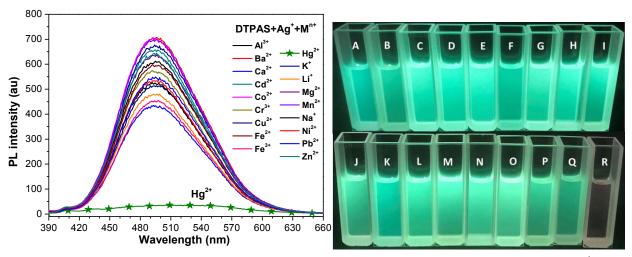
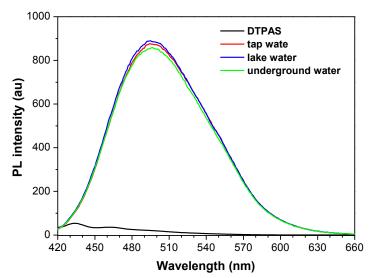


Fig. S11 ESP maps and the dipole moment of DTPAO, DTPAOS and DTPAS.


Fig. S12 UV-Vis spectra of DTPAO, DTPAOS and DTPAS in THF.


Fig. S13 UV-Vis absorption spectra of **DTPAS** in presence of Hg^{2+} (a) and Ag^{+} (b) under different reaction time in THF.

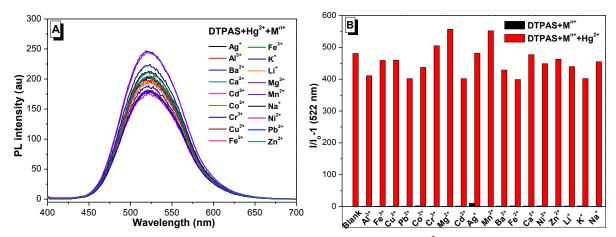
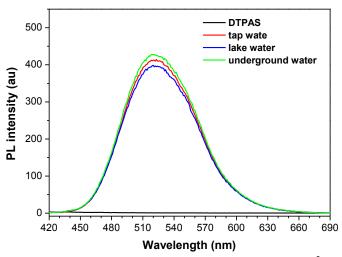
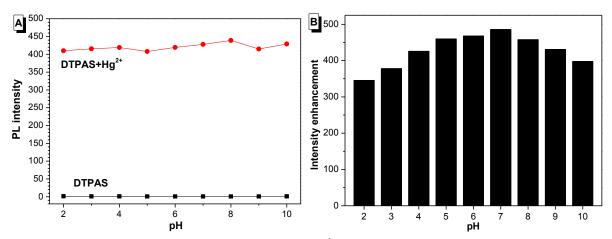
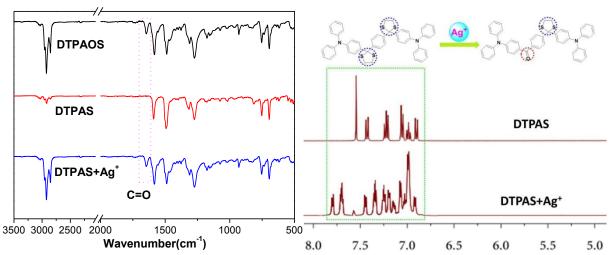

Fig. S14 Pseudo-first-order kinetics plots for **DTPAS** reacted with Hg^{2+} (a) and Ag^{+} (b), respectively. C_0 is the [**DTPAS**]₀ at time t = 0 and C_t is the [**DTPAS**]_t at time t. The rate constant (k) is calculated as $\ln C_0/C_t = kt$.

Fig. S15 PL spectra and fluorescence photos of **DTPAS** (20 μ M) reacted with Ag⁺ in the presence of various metal ions (6 × 10⁻⁴ M) in THF solution. (A-R) **DTPAS**+Ag⁺+ Al³⁺, Fe³⁺, Cu²⁺, Pb²⁺, Co²⁺, Cr³⁺, Cd²⁺, Mg²⁺, Mn²⁺, Ba²⁺, Fe²⁺, Ca²⁺, Ni²⁺, Zn²⁺, Li⁺, K⁺, Na⁺, Hg²⁺.


Fig. S16 PL spectra of **DTPAS** (10 μ M) in THF, and **DTPAS** reacted with Ag⁺ (3 × 10⁻⁴ M) in tap water, lake water and underground water.


Fig. S17 (a) PL spectra of **DTPAS** (20 μ M) in the presence of Hg²⁺ and various metal ions (6 \times 10⁻⁴ M) in THF-H₂O mixtures with $f_{\rm W}$ = 98%.(b) Fluorescence spectra profiles of **DTPAS** (20 μ M) in the presence of various metal ions and Hg²⁺ (6 \times 10⁻⁴ M, red line) in THF-H₂O mixtures with $f_{\rm W}$ = 98%.


Fig. S18 Fluorescence photos of **DTPAS** (20 μM) reacted with Hg²⁺ in the presence of various metal ions (6 × 10⁻⁴ M) in THF/H₂O (2/98, v/v) solution. (A-R) **DTPAS+Hg²⁺+**Ag⁺, Al³⁺, Fe³⁺, Cu²⁺, Pb²⁺, Co²⁺, Cr³⁺, Cd²⁺, Mg²⁺, Mn²⁺, Ba²⁺, Fe²⁺, Ca²⁺, Ni²⁺, Zn²⁺, Li⁺, K⁺, Na⁺.

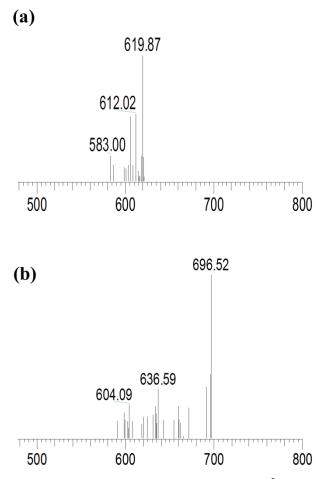

Fig. S19 PL spectra of **DTPAS** (10 μ M) and **DTPAS** reacted with Hg²⁺ (3 × 10⁻⁴ M) in tap water, lake water and underground water in THF/H₂O with $f_W = 98\%$.

Fig. S20 (a) PL intensity of **DTPAS** and **DTPAS+Hg**²⁺ at different pH values with $f_W = 98\%$. (b) PL intensity enhancement of **DTPAS** (20 μ M) in the presence of Hg²⁺ (6 × 10⁻⁴ M) at different pH values.

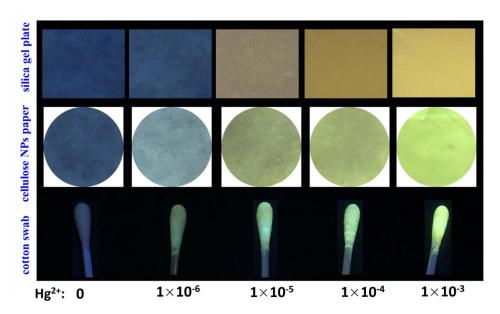

Fig. S21 IR spectra of **DTPAOS**, **DTPAS** and the reaction product of **DTPAS**+**Ag**⁺ (left). ¹H NMR spectra of **DTPAS** (THF-*d8*) before and after the addition of Ag⁺ ions (right).


Fig. S22 MS spectra of the reaction products of **DTPAS** with Hg^{2+} (a) and Ag^{+} (b), the values are almost the same as the formula mass of **DTPAO** and **DTPAOS**, respectively.

Table S3 DTPAS detect Hg²⁺ and Ag⁺ in different actual water samples.

Water	Metal	Added	ICP-MS	Detected	Recovery	RSD (%)
samples	ions	(10^{-5} mol/L)	(10^{-5} mol/L)	(10^{-5} mol/L)	(%)	(n=3)
Tap water	Hg^{2+}	3.0	2.95	2.91	97	0.67
water	Ag^+	9.0	8.94	8.92	99	1.13
Lake water	Hg^{2^+} Ag^+	3.0 9.0	3.04 9.08	3.05 8.87	101 98	1.06 1.64
Underground	Hg^{2+}	3.0	2.98	3.13	104	0.89
water	Ag^+	9.0	9.11	9.21	102	1.24

Fig. S23 Fluorescence responses of **DTPAS** encountered various Hg^{2+} contents in water with different solid mediums (silica gel plate, cellulose NPs paper and cotton swab).

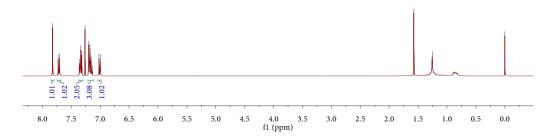
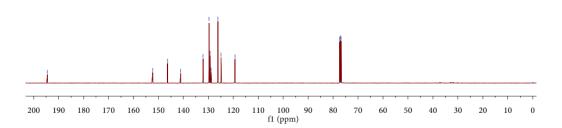
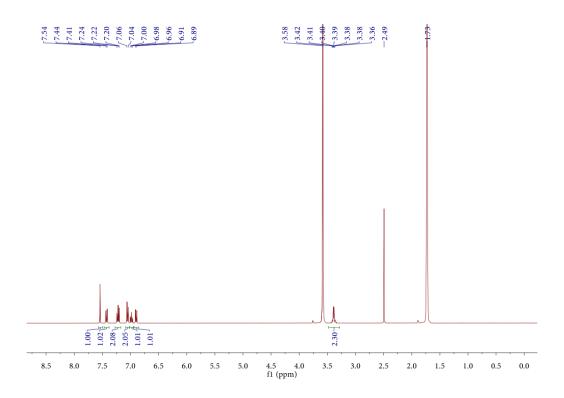
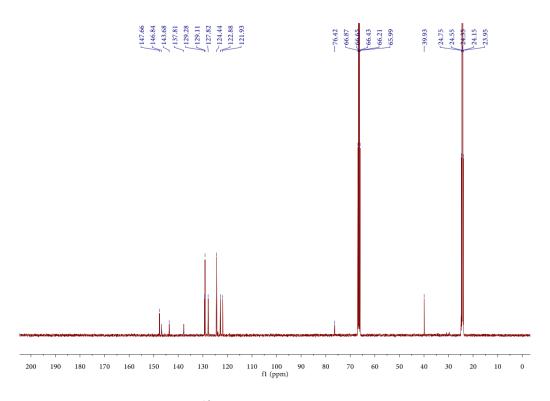




Fig. S24 ¹H NMR of **DTPAO** in CDCl₃.



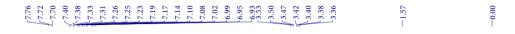

Fig. S25 ¹³C NMR of **DTPAO** in CDCl₃.

Fig. S26 1 H NMR of **DTPAS** in THF- d_{8} .

Fig. S27 13 C NMR of **DTPAS** in THF- d_8 .

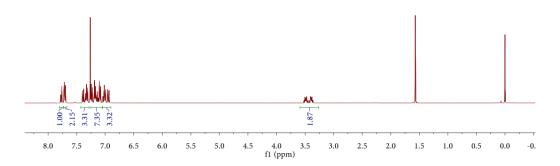


Fig. S28 1 H NMR of DTPAOS in CDCl₃.

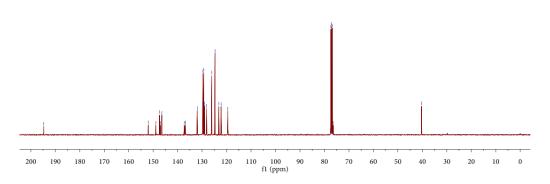


Fig. S29 13 C NMR of DTPAOS in CDCl₃.