Supporting Information

Marcus Inverted Region in Organic Long-Persistent Luminescence Host-Guest Systems Designed from Thermally Activated Delayed Fluorescence Molecule: A Mechanism Study

Yajie Meng^{1,2}, Xi Chen³, Yingqi Li³, Yunlong Shang², Yulin Guo³, Yong Wu^{3*}, Haiyan Wei^{3*} and Jiawei Xu^{1,2,3*}

1. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

2. School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

3. Ministry-of-Education Key Laboratory of Numerical Simulation of Large-Scale Complex System (*NSLSCS*) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China.

* Corresponding Authors: wuyong@njnu.edu.cn (Y. Wu), weihaiyan@njnu.edu.cn (H. Wei) and xujiawei@fjirsm.ac.cn (J. Xu)

Menu

Menu	1
1. Calculation Details	2
1.1 General Methods	2
1.2 Realization of Fragment Charge Difference	3
2. Supplemental Figures	5
3. Computational Results	
3.1 Transition Dipole Moments	
3.2 Inter-Fragment Charge Transfer Analysis	16
3.3 Coupling Integrals	
4. Geometric Structures	
5. References	27

1. Calculation Details

1.1 General Methods

All geometric structures are optimized with Gaussian16 Program (Revision C.01),¹ with Minnesota hybrid functional of M06-2X form² and def2-SVP basis sets developed by Ahlrich and co-workers used.³ The Grimme's third dispersion correction (D3) is adopted for better consideration of intermolecular weak interactions.⁴ Frequency calculations at the same level are performed for all structures on steady points to ensure no imaginary frequency exists. Excited states are calculated under the framework of time-independent density functional theory (TD-DFT) except for T₁ states are calculated by unrestricted Kohn-Sham method.

Wavefunction analysis (**Table S1** ~ **S4**) is carried out by Multiwfn Program (Development version 3.8)⁵ and Visual Molecular Dynamics (VMD, version 1.9.3) is applied for better visualization of our results.⁶ Spin-orbit coupling integrals (*H*) are calculated using Dalton2020 Program,⁷⁻⁸ with both single- and double-electron spinorbit integrals precisely calculated under CAM-B3LYP/def2-SVP level of theory (**Table S5**).⁹ Phosphorescence oscillator strength is calculated with quadratic response theory¹⁰⁻¹¹ using Dalton2020 Program. Electronic coupling integrals (*V*) in non-adiabatic processes are calculated by fragment charge difference (FCD) method (**Table S6**).¹²⁻

1.2 Realization of Fragment Charge Difference

Electronic coupling integrals (V) in non-adiabatic processes are calculated by fragment charge difference (FCD) method¹²⁻¹³ according to **eq. S1**, where ΔE_{FC} stands for the vertical energy gap between the studied states. Elements of the donor-acceptor 2×2 charge difference matrix $\Delta \mathbf{q}$ are defined as **eq. S2**, where ρ_{mn} stands for the transition density matrix between state m and n. For diagonal elements Δq_{11} and Δq_{22} , ρ_{mn} refers to transition electronic density for excited states. For off-diagonal elements Δq_{12} and Δq_{21} , **eq. S3** is applied for symmetrizing. The integrals involved in FCD calculation can be calculated as summations on the introduced basis set according to Slater-Condon rule, which is performed by Multiwfn Program.⁵

$$V = \frac{\Delta E_{FC} \bar{\Delta} q_{12}}{\sqrt{(\Delta q_{11} - \Delta q_{22})^2 + 4\bar{\Delta} q_{12}^2}} \#(eq. S1)$$

$$\Delta q_{mn} = q_{mn}^D - q_{mn}^A = \int_{r \in D} \rho_{mn}(r) dr - \int_{r \in A} \rho_{mn}(r) dr \#(eq. S2)$$

$$\Delta q_{12} = \frac{1}{2} (\Delta q_{12} + \Delta q_{21}) \#(eq. S3)$$

Below we show an example for $S_1 \rightarrow S_3$ FCD calculation. Contents of input files and system commands are listed on the left, while explanations are on the right.

Gaussian16 input files: TD-DFT job.	
%NProcShared=16	
%OldChk=S1Opt.chk	Use optimized S ₁ state structure.
%Chk=S1S3FCD.chk	Save new checkpoint file for following steps.
#P M062X/def2SVP EM=GD3	Detailed output (#P) is necessary.
TD(NStates=5,Root=1) IOp(9/40=4)	S_I state as target state. Output all configurations with coefficient > 10 ⁻⁴ .
Guess=Read Geom=AllCheck	Read optimized S ₁ structure from %OldChk.
Generate transition density matrix.	
formchk S1S3FCD.chk S1S3FCD.fchk	Write formatted checkpoint files.
Multiwfn S1S3FCD.fchk	Read formatted checkpoint file into Multiwfn.
18	Electron excitation analysis.
9	Generate and export transition density matrix.
S1S3FCD.log	Read Gaussian16 output file.
2	Generate transition density matrix between two excited states.
1,3	Calculate transition density matrix between S_1 and S_3 states.
Enter	Use default threshold of product of two configuration coefficients.
1	Symmetrize as eq. S3.
у	Output TDM.fch file in current folder.
Exit Multiwfn	
Integrate transition density in whole space.	
Multiwfn TDM.fch	Reload transition density matrix into Multiwfn.
100	Other functions (Part 1).
4	Integrate a function in whole space.

1

Exit Multiwfn

Record final result (to calculate $q_{12}^D + q_{12}^A$, 559.9997404530) and accumulated value for atom centers 1-67 (303.9810126885, corresponding to PPT donor part, to calculate q_{12}^D on screen. Total electron number of PPT

part is 304 and that of CzPhAP is 256. Hence, we have:

$$\Delta q_{12} = q_{12}^D - q_{12}^A = 2q_{12}^D - (q_{12}^D + q_{12}^A)$$

= 2 × (303.9810126885 - 304) - (559.9997404530 - 304 - 256) = -0.0377150760 (eq. S4)

Since we have symmetrized transition density matrix elements before, here $\Delta q_{12} = \Delta q_{21} = \overline{\Delta} q_{12}$.

Calculate inter-fragment charge transfer.	
Multiwfn S1S3FCD.fch	Read formatted checkpoint file into Multiwfn.
18	Electron excitation analysis.
8	Calculate inter-fragment charge transfer via IFCT method
1	Mulliken-like partition
S1S3FCD.log	Read Gaussian16 output file.
1	Perform the analysis for S_1 state.
2	Define two fragments.
1-67	Range of atom number for fragment 1. (PPT part)
68-123	Range of atom number for fragment 2. (CzPhAP part)
0	Exit this function.
8	Calculate inter-fragment charge transfer via IFCT method
1	Mulliken-like partition
3	Perform the analysis for S_3 state.
2	Define two fragments.
1-67	Range of atom number for fragment 1. (PPT part)
68-123	Range of atom number for fragment 2. (CzPhAP part)
Exit Multiwfn	

Record two net charge transfer values as 0.71095 for S1 state and 0.56279 for S3 state. Hence, we have:

$$\Delta q_{11} = q_{11}^D - q_{11}^A = -(q_{11}^A - q_{11}^D) = -2 \times 0.71095 = -1.42190 \#(eq. S5)$$

$$\Delta q_{22} = q_{22}^D - q_{22}^A = -(q_{22}^A - q_{22}^D) = -2 \times 0.56279 = -1.12558 \#(eq. S6)$$

Substitute eq. S4 ~ S6 into eq. S1 and $\Delta E_{FC} = 0.02353591$ a.u. gives V = -0.00290303 a.u., or 636.7 cm⁻¹.

Notice that since we calculate transition density matrix as $S_1 \rightarrow S_3$ transition, the ΔE_{FC} value should hence be calculated as $E(S_3) - E(S_1)$, which is a positive value. Sometimes the final result of coupling integral is a negative value, however, this is not important due to square calculation in eq. S1. Positive or negative coupling integral is decided jointly by energy difference and extents of charge separation of two states. Detailed FCD results are listed in Table S6.

2. Supplemental Figures

Figure S1. a). Distance between mass centres of AP moiety of CzPhAP and DBT moiety of PPT along the 100 ns MD simulation after the annealing. This selected PPT molecule holds the longest binding conformation with dopant molecule CzPhAP among the 100 host molecules. **b).** The stacking conformation between CzPhAP and PPT with the minimum distance of 0.282 nm between mass centres in the MD simulation after annealing.

Figure S2. a). Distance between mass centres of AP moiety of CzPhAP and DBT moiety of PPT along the 100 ns MD simulataion after the annealing. This selected PPT molecule holds the longest binding conformation with dopant molecule CzPhAP among the 200 host molecules. **b).** The stacking conformation between CzPhAP and PPT with the minimum distance of 0.306 nm between mass centres in the MD simulation after annealing.

Figure S3. a). Distance between mass centres of AP moiety of CzPhAP and DBT moiety of PPT along the 100 ns MD simulation after the annealing. This selected PPT molecule holds the longest binding conformation with dopant molecule CzPhAP among the 300 host molecules. **b).** The stacking conformation between CzPhAP and PPT with the minimum distance of 0.329 nm between mass centres in the MD simulation after annealing.

Figure S4. a). Distance between mass centres of AP moiety of CzPhAP and DBT moiety of PPT along the 100 ns MD simulation after the annealing. This selected PPT molecule holds the longest binding conformation with dopant molecule CzPhAP among the 400 host molecules. **b).** The stacking conformation between CzPhAP and PPT with the minimum distance of 0.511 nm between mass centres in the MD simulation after annealing.

Figure S5. a). Distance between mass centres of AP moiety of CzPhAP and DBT moiety of PPT along the 100 ns MD simulation after the annealing. This selected PPT molecule holds the longest binding conformation with dopant molecule CzPhAP among the 500 host molecules. **b).** The stacking conformation between CzPhAP and PPT with the minimum distance of 0.351 nm between mass centres in the MD simulation after annealing.

Figure S6. Isosurface (isovalue: 0.0030 a.u.) of electron-hole distribution and IFCT population change for different excited states of CzPhAP:TPBi host-guest system.

Figure S7. Atomic transition density matrices of key excited states in the form of heat maps for CzPhAP:TPBi host-guest system.

Figure S8. Predicted steady-state UV-Vis absorption spectra of CzPhAP molecule and CzPhAP:PPT host-guest system.

3. Computational Results

3.1 Transition Dipole Moments

(Table S1 and S2 are on the next page.)

S State i	S State j	x	y	z	ΔE (eV)	fij	T State i	T State j	x	у	z	Δ <i>E</i> (eV)	f_{ij}
0	0	-2 42286	0.85590	-1 23118	0.00000	0.00000	(5) 0	(5) 0	-2 42286	0.85590	-1 23118	0.00000	0.00000
0	1	-2.20589	0.14617	-0.05315	3.29970	0.39532	(S) 0	(_) *	-4.13955	-0.14320	0.59115	2.53550	1.08744
0	2	1.18261	-0.12178	-0.48062	3.47090	0.13983	(S) 0	2	-0.15009	2.29071	0.08617	2.90190	0.37519
0	3	-0.20527	0.16915	-0.29015	3.71150	0.01409	(S) 0	3	0.67502	1.96311	-0.83505	3.34510	0.41032
0	4	-0.02144	0.12190	-0.17970	3.79290	0.00442	(S) 0	4	0.30714	0.10791	0.32265	3.42540	0.01763
0	5	-0.77597	-0.17876	0.28048	3.89630	0.06804	(S) 0	5	0.31699	0.62805	-0.16580	3.45860	0.04427
0	6	0.51060	0.07011	-0.01179	3.93590	0.02563	(S) 0	6	-1.21401	0.82854	0.25219	3.51640	0.19159
0	7	0.06315	-0.02464	0.16860	3.97440	0.00322	(S) 0	7	2.95266	0.60910	-0.53234	3.56380	0.81833
0	8	-0.02783	-0.00115	0.02834	4.11060	0.00016	(S) 0	8	0.00178	1.96755	0.31245	3.61660	0.35166
0	9	0.00348	-0.00225	-0.00576	4.15810	0.00001	(S) 0	9	0.21970	0.11495	-0.33735	3.71780	0.01597
0	10	1.62520	0.16182	-0.38280	4.19010	0.28887	(S) 0	10	-2.32335	-0.09831	0.56660	3.75070	0.52641
1	1	-4.90672	1.245/1	2.3/188	0.00000	0.00000	1	1	-3.66/61	0.98795	-0./4/46	0.00000	0.00000
1	2	0.85160	-0.39011	0.10252	0.1/120	0.14127	1	2	-0.42548	0.42341	-0.01837	0.30040	0.00324
1	4	3 28833	0.24423	0.23147	0.49320	0.13192	1	4	0.01579	0.01005	-0.01800	0.88990	0.02013
	5	1.35288	0.12610	-1.62692	0.59660	0.06567	1	5	1.68215	-0.12101	-0.52181	0.92310	0.07048
1	6	0.10334	0.82128	0.38430	0.63620	0.01298	1	6	-0.88012	-0.23906	-0.06883	0.98090	0.02010
1	7	-0.03783	-0.06092	-0.01085	0.67470	0.00009	1	7	-0.36168	0.05691	-0.11048	1.02830	0.00368
1	8	-0.01256	-0.07216	-0.04181	0.81090	0.00014	1	8	-0.19826	-0.36663	-0.43177	1.08110	0.00954
1	9	0.02388	0.02077	0.09352	0.85840	0.00020	1	9	-0.59306	0.46855	0.42388	1.18230	0.02175
1	10	-0.67356	0.50440	0.27317	0.89040	0.01707	1	10	-0.24165	0.07250	0.07344	1.21520	0.00206
2	2	-7.83511	1.19058	2.25881	0.00000	0.00000	2	2	-2.35287	0.73831	-1.07775	0.00000	0.00000
2	3	-2.21171	0.07741	-0.40399	0.24060	0.02983	2	3	0.06928	-0.04035	-0.49976	0.44320	0.00278
2	4	-3.44473	0.11428	1.38153	0.32200	0.10877	2	4	0.04087	0.01776	0.00431	0.52350	0.00003
2	5	-4.15432	-0.12779	0.07860	0.42540	0.18010	2	5	1.72186	0.04364	-0.11785	0.55670	0.04065
2	6	-0.50517	0.12014	0.63071	0.46500	0.00760	2	6	-0.32991	-0.07253	0.54649	0.61450	0.00621
2	7	0.14033	-0.02979	-0.06830	0.50350	0.00031	2	7	-0.00643	0.20801	0.25125	0.66190	0.00173
2	8	-0.17618	-0.10604	0.07187	0.63970	0.00074	2	8	0.05381	-0.03340	0.33929	0.71470	0.00209
2	9	-0.04269	-0.03298	-0.14935	0.68720	0.00042	2	9	0.10356	-0.05897	-0.00176	0.81590	0.00028
2	10	0.90759	-0.55754	-0.19506	0.71920	0.02066	2	10	-0.11238	-0.00834	0.02037	0.84880	0.00027
3	3	-0.19109	-0.08660	3.85592	0.00000	0.00000	3	3	-1.48367	0.70852	2.23112	0.00000	0.00000
3	4	-0.49002	-0.08668	0.59270	0.08140	0.00119	3	4	-0.03651	-0.01668	0.02114	0.08030	0.00000
3	5	-1.92507	0.19075	-0.4/855	0.18480	0.00083	3	5	-1.395/9	0.09503	-0.25762	0.17130	0.00503
2	7	-0.54859	0.10484	0.05412	0.22440	0.00085	2	7	-0.52475	-0.24904	-1.01255	0.21870	0.00301
3	, 8	-0.06794	0.06672	-0.00356	0.20290	0.00004	3	8	-1.09608	-0.15580	-1.50858	0.21870	0.002332
3	9	-0.01117	-0.00664	-0.04711	0.44660	0.00003	3	9	0.95932	0.07819	0.78150	0.37270	0.01404
3	10	-0.30818	0.23623	-0.18634	0.47860	0.00218	3	10	0.16938	-0.00236	0.02897	0.40560	0.00029
4	4	-5.17372	0.87602	0.23456	0.00000	0.00000	4	4	-2.15142	0.93419	-1.29299	0.00000	0.00000
4	5	-3.11832	0.63503	0.16815	0.10340	0.02573	4	5	-0.14732	0.00417	0.04770	0.03320	0.00002
4	6	0.67589	-0.06976	-1.24362	0.14300	0.00704	4	6	0.07639	-0.00731	0.01401	0.09100	0.00001
4	7	-0.00711	0.00449	0.14591	0.18150	0.00009	4	7	-0.05773	-0.01349	0.09531	0.13840	0.00004
4	8	-0.19030	0.01224	-0.02061	0.31770	0.00029	4	8	0.00551	-0.02903	-0.00196	0.19120	0.00000
4	9	-0.02846	-0.02165	-0.11771	0.36520	0.00014	4	9	0.00834	0.04769	0.02220	0.29240	0.00002
4	10	2.44137	-0.07895	0.03030	0.39720	0.05807	4	10	0.01086	0.00642	-0.00081	0.32530	0.00000
5	5	-6.93764	0.36662	0.47879	0.00000	0.00000	5	5	-9.78862	0.93035	1.03285	0.00000	0.00000
5	6	-0.66257	0.60962	0.43945	0.03960	0.00097	5	6	3.52424	-0.15620	0.19155	0.05780	0.01767
5	7	0.10691	-0.03617	-0.04744	0.07810	0.00003	5	7	0.41796	-0.09469	0.24010	0.10520	0.00062
5	8	-0.23530	0.04855	0.04374	0.21430	0.00031	5	8	0.07022	0.00875	0.44109	0.15800	0.00077
5	9	-0.02296	-0.02429	-0.13629	0.26180	0.00013	5	9	2.53314	-0.21201	-0.11066	0.25920	0.04111
5	10	-0.29662	0.45773	-0.00933	0.29380	0.00214	5	10	0.91530	-0.04141	-0.1/200	0.29210	0.00622
0	0	-2./40//	0.07810	2.91818	0.00000	0.00000	6	0 7	-2.9/14/	0.01014	0.58021	0.00000	0.00000
6	2 2	-0.00333	0.07085	-0.30723	0 17470	0.00020	6	/ ۶	0.12004	-0.04270	0.83475	0 10020	0.00042
6	9	-0.00558	-0,00067	-0.01475	0,22220	0,00004	6	Q	-0,87666	-0,12460	0.90357	0.20140	0.00790
6	10	-1.79139	0.03759	-1.20574	0.25420	0.02905	6	10	-0.39271	-0.00578	0.14163	0.23430	0.00100
7	7	-2.14912	0.92335	-1.23837	0.00000	0.00000	7	7	-2.98083	0.87886	-0.64618	0.00000	0.00000
7	8	0.06688	-0.19601	-0.01743	0.13620	0.00014	7	8	0.43076	-0.16965	0.45826	0.05280	0.00055
7	9	0.00264	-0.00195	0.00372	0.18370	0.00000	7	9	-0.91929	0.37787	0.07291	0.15400	0.00375
7	10	0.06453	-0.05063	0.27719	0.21570	0.00044	7	10	-0.16856	0.06199	0.01112	0.18690	0.00015
8	8	-1.52173	0.92762	-1.41949	0.00000	0.00000	8	8	-2.40445	0.88032	-0.19195	0.00000	0.00000
8	9	0.27624	-0.00722	-0.06899	0.04750	0.00009	8	9	0.27872	-0.09545	-0.59397	0.10120	0.00109
8	10	-0.01931	0.02059	0.06072	0.07950	0.00001	8	10	0.04857	-0.02251	-0.06918	0.13410	0.00003
9	9	-	1.38302	3.04503	0.00000	0.00000	9	9	-4.81738	0.57707	1.16156	0.00000	0.00000
9	10	0.04356	0.00500	0.02491	0.03200	0.00000	9	10	-0.65719	-0.01843	0.34730	0.03290	0.00045
10	10	-7.14272	0.88374	1.66403	0.00000	0.00000	10	10	-1.56243	0.91571	-1.41616	0.00000	0.00000

Table S1. Transition dipole moments and oscillator strengths between excited states (CzPhAP:PPT)

S14

Table \$2 Transition dipole moments and oscillator strengths between excited states (CzPhAP:TPRi)
Table S2. Transition dipole moments and oscillator strengths between excited states (CZPhAP: IPBI)

S State i	S State j	x	у	z	ΔE (eV)	fij	T State i	T State j	x	у	z	ΔE (eV)	f_{ij}
0	0	-4.34162	0.12650	3.25154	0.00000	0.00000	(S) 0	(S) 0	-4.34162	0.12650	3.25154	0.00000	0.00000
0	1	-2.18662	-0.02521	0.24109	3.31060	0.39257	(S) 0	1	-4.10541	0.40412	0.64255	2.52860	1.07982
0	2	-0.18251	0.49386	0.11946	3.55210	0.02537	(S) 0	2	-0.06415	-1.65607	-1.65790	2.87370	0.38690
0	3	0.02121	-0.02518	-0.03899	3.64460	0.00023	(S) 0	3	-0.69296	0.24250	0.46649	3.40580	0.06313
0	4	0.16930	0.09583	-0.11682	3.86690	0.00488	(S) 0	4	0.06678	0.30003	-0.27043	3.43060	0.01409
0	5	-0.57786	0.08997	0.24068	3.89610	0.03818	(S) 0	5	0.99317	0.67068	0.98521	3.44860	0.20335
0	6	-0.09129	-0.17135	0.14459	3.98220	0.00572	(S) 0	6	-0.49071	1.89494	1.77595	3.57110	0.61117
0	7	-0.05727	-0.01691	0.01018	4.01630	0.00036	(S) 0	7	3.14493	0.20887	0.23962	3.58090	0.87657
0	8	0.08553	0.02188	0.00041	4.05360	0.00077	(S) 0	8	0.18459	-1.31167	-0.99626	3.63240	0.24447
0	9	-1.65225	0.11883	0.41137	4.17320	0.29786	(S) 0	9	0.07262	0.58973	-1.69393	3.63750	0.28718
0	10	-0.24792	-0.00068	0.09145	4.24000	0.00725	(S) 0	10	0.24959	0.30862	0.42044	3.64720	0.02987
1	1	-	-0.38341	3.79736	0.00000	0.00000	1	1	-6.022/3	0.03870	3.27645	0.00000	0.00000
1	2	-1.33386	0.27254	0.160//	0.24150	0.01112	1	2	-0.2916/	-0.24043	-0.21658	0.34510	0.00160
1	3	2 56024	0.06250	0.64522	0.55620	0.17840		3	-2.50595	0.00042	0.02106	0.07720	0.00005
1	5	4 31619	-0.04981	-0.65646	0.58550	0.27345	1	5	-0.04732	0.00106	0.00806	0.92000	0.00005
1	6	0.11485	-0.00901	-0.03602	0.67160	0.00024	1	6	0.33153	-0.01249	-0.15514	1.04250	0.00343
1	7	1.36587	0.19198	-0.33560	0.70570	0.03484	1	7	-0.04158	-0.22067	-0.29261	1.05230	0.00351
1	8	-0.51332	-0.04310	0.10225	0.74300	0.00502	1	8	0.25855	0.21764	0.04268	1.10380	0.00314
1	9	1.75236	0.47387	0.25263	0.86260	0.07099	1	9	0.25890	0.10511	-0.00601	1.10890	0.00212
1	10	0.11550	0.32639	0.22750	0.92940	0.00391	1	10	-0.46279	0.08067	0.00851	1.11860	0.00605
2	2	-4.00420	-5.38219	4.85871	0.00000	0.00000	2	2	-3.92017	-0.16754	3.48244	0.00000	0.00000
2	3	0.08216	-0.07386	0.21105	0.09250	0.00013	2	3	-1.18638	0.46489	0.12999	0.53210	0.02139
2	4	0.25586	-2.23116	0.57230	0.31480	0.04142	2	4	-0.04403	0.03130	-0.01470	0.55690	0.00004
2	5	0.93390	1.15147	-0.06209	0.34400	0.01856	2	5	-0.01792	-0.02237	0.00890	0.57490	0.00001
2	6	-0.01214	0.04724	-0.03206	0.43010	0.00004	2	6	0.09329	0.52738	-0.06433	0.69740	0.00497
2	7	0.13008	-0.04897	0.11983	0.46420	0.00038	2	7	0.10539	0.22615	-0.28894	0.70720	0.00253
2	8	0.04804	0.26518	-0.14282	0.50150	0.00114	2	8	-0.03927	0.71475	-0.24326	0.75870	0.01062
2	9	0.36740	0.111/3	-0.33234	0.62110	0.00392	2	9	0.05050	0.25052	-0.11/12	0.70380	0.00149
2	10	-4 06724	-7.08197	4 40179	0.00000	0.02300	3	10	-0.10595	-0.37492	4 17845	0.00000	0.02003
3	4	0.56593	0.52826	0.05319	0.22230	0.00328	3	4	-0.13362	-0.03893	0.03108	0.02480	0.00001
3	5	0.78809	-0.68406	0.00329	0.25150	0.00671	3	5	-0.11751	0.01599	0.01350	0.04280	0.00001
3	6	-0.05484	-0.08500	-0.03189	0.33760	0.00009	3	6	0.80184	-0.48603	0.02533	0.16530	0.00356
3	7	-0.48320	-0.03565	-0.24079	0.37170	0.00267	3	7	0.63211	-0.47558	0.01332	0.17510	0.00269
3	8	-0.08597	0.45531	-0.19207	0.40900	0.00252	3	8	0.65402	-0.77874	0.25572	0.22660	0.00610
3	9	-0.03221	-0.18301	-0.05160	0.52860	0.00048	3	9	0.72358	-0.28786	0.03966	0.23170	0.00345
3	10	-0.51680	-0.18288	-0.16977	0.59540	0.00480	3	10	-1.20527	0.72679	-0.13825	0.24140	0.01183
4	4	-6.82894	-0.94662	3.61973	0.00000	0.00000	4	4	-4.08076	-0.01548	3.11930	0.00000	0.00000
4	5	-3.22739	-0.16555	-0.35569	0.02920	0.00756	4	5	0.00879	0.00670	0.00140	0.01800	0.00000
4	6	-0.11382	-0.02204	-0.05451	0.11530	0.00005	4	6	0.02109	-0.07134	0.04076	0.14050	0.00002
4	7	1.08283	0.34209	0.50862	0.14940	0.00567	4	7	0.07750	-0.04871	0.01044	0.15030	0.00003
4	8	0.54227	0.10746	-0.01857	0.18670	0.00140	4	8	0.05669	-0.14216	0.05345	0.20180	0.00013
4	9	-1./38/5	0.32993	0.06989	0.30630	0.02354	4	9	0.03853	-0.06450	0.02238	0.20690	0.00003
4	10	-0.70280	-0.26375	3 90262	0.07310	0.000017	5	10	-4 68643	-0 24314	-0.01706	0.21000	0.00001
5	6	-0.30593	-0.01401	-0.00994	0,08610	0.00020	5	6	0,00688	-0,00691	-0.01280	0,12250	0.00000
5	7	1.36254	1.16986	0.95564	0.12020	0.01219	5	7	-0.00293	0.02540	-0.01554	0.13230	0.00000
5	8	0.74152	0.03893	-0.00943	0.15750	0.00213	5	8	-0.01363	-0.05005	-0.01249	0.18380	0.00001
5	9	-0.21867	0.30641	0.35105	0.27710	0.00180	5	9	-0.01061	0.08839	-0.01667	0.18890	0.00004
5	10	0.59634	-0.32806	0.26969	0.34390	0.00452	5	10	-0.00198	-0.22149	0.03749	0.19860	0.00025
6	6	-4.10724	-0.10607	3.10003	0.00000	0.00000	6	6	-5.16355	-1.14781	3.84049	0.00000	0.00000
6	7	0.21008	0.14906	0.06765	0.03410	0.00006	6	7	-0.00849	-0.17350	0.17396	0.00980	0.00001
6	8	-0.03068	-0.11679	-0.13568	0.07140	0.00006	6	8	0.36258	-2.35267	0.42219	0.06130	0.00878
6	9	0.11946	-0.15580	0.07566	0.19100	0.00021	6	9	0.11825	-1.06911	0.19183	0.06640	0.00194
6	10	0.06782	0.08238	-0.06009	0.25780	0.00009	6	10	0.41611	-0.47636	-0.04553	0.07610	0.00075
7	7	-	-5.36582	0.51388	0.00000	0.00000	7	7	-5.16667	-0.71070	3.45764	0.00000	0.00000
7	8	-0.56581	-0.27664	-0.15667	0.03730	0.00038	7	8	0.37701	-0.87179	0.35831	0.05150	0.00130
7	9	-0.83772	-0.06777	-0.15429	0.15690	0.00281	7	9	0.10209	-0.35880	0.15967	0.05660	0.00023
7	10	-0.18880	0.49533	0.39090	0.22370	0.00238	7	10	-0.26797	0.95044	-0.32739	0.06630	0.00176
8	8	-3.39661	-0.15844	2.93468	0.11060	0.00000	8	8	-4.4/738	-3.48988	4.24967	0.00000	0.00000
8 8	9	-0.24706	-0.00/48	-0.05454	0.18640	0.00011	8	9	0.35271	-1.00343	-0.14250	0.01480	0.00037
9	9	-8.46135	-2.35108	4.42614	0.00000	0.00000	9	9	-4.47245	-0.65325	3.47081	0.00000	0.00000
9	10	-2.87220	1.45573	-0.63051	0.06680	0.01762	9	10	0.24553	-0.62208	-0.00488	0.00970	0.00011
10	10	-	-3.74380	2.77647	0.00000	0.00000	10	10	-4.91147	-6.09968	4.32766	0.00000	0.00000

S15

State	Hole ^D	Electron ^D	Hole ^D	Electron ^D	Redis ^D	Redis ^A	D→A	A→D	Net IFCT
S_1	0.4917	0.0342	0.5083	0.9658	0.0168	0.4909	0.4749	0.0174	0.4575
S_2	0.3673	0.0315	0.6327	0.9685	0.0116	0.6128	0.3557	0.0199	0.3358
S_3	0.8756	0.0338	0.1244	0.9662	0.0296	0.1202	0.8460	0.0042	0.8418
S_4	0.1667	0.0350	0.8333	0.9650	0.0058	0.8041	0.1609	0.0292	0.1317
S_5	0.1442	0.0381	0.8558	0.9619	0.0055	0.8232	0.1387	0.0326	0.1061
S_6	0.6745	0.0441	0.3255	0.9559	0.0297	0.3112	0.6448	0.0143	0.6305
S_7	0.0286	0.0318	0.9714	0.9682	0.0009	0.9405	0.0276	0.0309	-0.0033
S_8	0.0204	0.0324	0.9796	0.9676	0.0007	0.9479	0.0197	0.0317	-0.0120
S_9	0.0000	0.0278	1.0000	0.9722	0.0000	0.9722	0.0000	0.0278	-0.0278
S_{10}	0.3272	0.0393	0.6728	0.9607	0.0129	0.6463	0.3144	0.0264	0.2880
T_1	0.0725	0.0345	0.9275	0.9655	0.0025	0.8955	0.0700	0.0320	0.0380
T_2	0.0636	0.0382	0.9364	0.9618	0.0024	0.9006	0.0611	0.0358	0.0253
T_3	0.6083	0.0450	0.3917	0.9550	0.0274	0.3740	0.5810	0.0176	0.5634
T_4	0.0212	0.0353	0.9788	0.9647	0.0007	0.9443	0.0204	0.0345	-0.0141
T ₅	0.1349	0.0565	0.8651	0.9435	0.0076	0.8162	0.1273	0.0489	0.0784
T ₆	0.6119	0.3352	0.3881	0.6648	0.2051	0.2580	0.4068	0.1301	0.2767
T ₇	0.1275	0.0522	0.8725	0.9478	0.0067	0.8269	0.1208	0.0456	0.0752
T ₈	0.6664	0.5033	0.3336	0.4967	0.3354	0.1657	0.3310	0.1679	0.1631
T ₉	0.4244	0.1240	0.5756	0.8760	0.0526	0.5042	0.3717	0.0714	0.3003

0.9955

0.0000

0.9868

0.0087

0.0045

0.0042

3.2 Inter-Fragment Charge Transfer Analysis

0.0087

 $T_{10} \\$

0.0045

0.9913

Table S4. Inter-fragment charge transfer and electron-hole distribution (CzPhAP:TPBi).

State	Hole ^D	Electron ^D	Hole ^D	Electron ^D	Redis ^D	Redis ^A	D→A	A→D	Net IFCT
S ₁	0.0234	0.0246	0.8671	0.9712	0.0006	0.8422	0.0228	0.0213	0.0015
S_2	0.7574	0.0201	0.2386	0.9788	0.0152	0.2335	0.7414	0.0048	0.7366
S_3	0.9450	0.0189	0.0534	0.9802	0.0178	0.0523	0.9263	0.0010	0.9253
S_4	0.1715	0.0228	0.7887	0.9758	0.0039	0.7697	0.1674	0.0180	0.1494
S_5	0.1138	0.0254	0.7927	0.9718	0.0029	0.7704	0.1106	0.0201	0.0905
S_6	0.0276	0.0249	0.9701	0.9739	0.0007	0.9448	0.0268	0.0241	0.0027
S_7	0.8448	0.0236	0.1355	0.9745	0.0199	0.1321	0.8232	0.0032	0.8200
S_8	0.0231	0.0214	0.9742	0.9778	0.0005	0.9525	0.0226	0.0209	0.0017
S_9	0.3864	0.0289	0.5737	0.9648	0.0112	0.5535	0.3728	0.0166	0.3562
\mathbf{S}_{10}	0.6562	0.0238	0.3133	0.9712	0.0156	0.3043	0.6372	0.0075	0.6297
T_1	0.0279	0.0300	0.9611	0.9676	0.0008	0.9300	0.0270	0.0289	-0.0019
T ₂	0.0827	0.0260	0.9132	0.9723	0.0022	0.8879	0.0804	0.0238	0.0566
T ₃	0.0841	0.0367	0.7779	0.9421	0.0031	0.7328	0.0793	0.0285	0.0508
T_4	0.0232	0.0283	0.9733	0.9701	0.0007	0.9442	0.0225	0.0275	-0.0050
T ₅	0.9691	0.9583	0.0279	0.0371	0.9287	0.0010	0.0360	0.0268	0.0092
T ₆	0.2353	0.0275	0.7605	0.9708	0.0065	0.7383	0.2284	0.0209	0.2075
T ₇	0.1394	0.0260	0.8546	0.9713	0.0036	0.8300	0.1354	0.0222	0.1132
T_8	0.5506	0.0552	0.3639	0.8564	0.0304	0.3116	0.4715	0.0201	0.4514
T ₉	0.1531	0.0475	0.4286	0.5173	0.0073	0.2217	0.0792	0.0204	0.0588
T_{10}	0.8263	0.0343	0.1667	0.9632	0.0283	0.1605	0.7959	0.0057	0.7902

3.3 Coupling Integrals

Initial State	Final State	Final State x/a.u. y/a.u.		z / a.u.	SOC, <i>H</i> / cm ⁻¹						
S_1	T ₁	0.00000013	0.00000095	-0.00001019	2.2448						
\mathbf{S}_1	T ₃	0.00000128	0.00000502	-0.00000118	1.1653						
S_3	T_1	0.00000221	0.00000030	-0.00000198	0.6541						
S ₃	T ₃	-0.00000174	0.00000004	-0.00000790	1.7742						
T_1	\mathbf{S}_1	0.00001297	0.00001431	-0.0000005	4.2372						
T_1	S_3	-0.00001134	0.00000359	0.00001484	4.1712						
T ₃	\mathbf{S}_1	-0.00000223	0.00000025	-0.00000434	1.0716						
T ₃	S_3	-0.00000011	-0.00000426	0.00000273	1.1010						

Table S5. Spin-orbit coupling matrices elements

Table S6. Results of electronic coupling integrals calculated by FCD method.

Initial State	Final State	Net	IFCT,	Net	IFCT,	Δq_{11}	Δq_{22}	Δq_{12}	$\Delta E_{\rm FC}$ / eV	V_{12} / cm ⁻¹
		Initial		Final						
S ₁	S ₃		0.71095		0.56279	1.42190	1.12558	-0.03772	0.64045	636.7
S ₃	\mathbf{S}_1		0.69440		0.73935	1.38880	1.47870	-0.12455	-0.43678	1655.7
T_1	T ₃		0.02899		0.14947	0.05798	0.29894	-0.00587	0.80972	145.5
T ₃	T ₁		0.66466		0.04622	1.32932	0.09244	-0.07424	-0.30284	158.7

4. Geometric Structures

				1					
					46	С	2.053935	-4.701364	0.764334
CzPhA	AP:PPT S	S ₀ state			47	С	-0.829833	-4.681284	0.302185
1	С	5.183090	1.348208	0.839672	48	С	2.633113	-4.191242	-0.407190
2	С	4.779829	2.698035	0.841958	49	С	2.701406	-5.712046	1.479797
3	С	3.439643	3.045162	0.970471	50	С	-0.611324	-5.035768	-1.033773
4	С	2.496351	2.021655	1.111961	51	С	-2.108181	-4.832438	0.855089
5	С	2.879874	0.667103	1.082548	52	С	3.850686	-4.694969	-0.857370
6	С	4.233972	0.335207	0.949429	53	Н	2.158285	-3.373270	-0.956915
7	Н	5.526573	3.493474	0.782840	54	С	3.918408	-6.217570	1.021401
8	Н	3.136741	4.092698	0.985475	55	Н	2.241224	-6.079118	2.399866
9	Н	4.574064	-0.703764	0.977724	56	С	-1.667501	-5.501568	-1.817387
10	С	0.535012	0.486304	1.407130	57	Н	0.390558	-4.976312	-1.463692
11	С	-0.679933	-0.190654	1.574915	58	С	-3.165366	-5.285243	0.066762
12	С	-0.674299	-1.577492	1.541578	59	Н	-2.251025	-4.623304	1.918029
13	С	0.522153	-2.302898	1.350339	60	С	4.491037	-5.710190	-0.143246
14	С	1.726654	-1.618290	1.224121	61	Н	4.308690	-4.281983	-1.757153
15	С	1.739615	-0.219948	1.239086	62	Н	4.425954	-7.002907	1.583141
16	Н	-1.611201	0.361130	1.714331	63	С	-2.946239	-5.618115	-1.270778
17	Н	-1.618711	-2.115091	1.654551	64	Н	-1.488012	-5.784784	-2.855544
18	Н	2.670162	-2.154731	1.115511	65	Н	-4.158707	-5.399851	0.503308
19	S	0.772090	2.222309	1.368799	66	Н	5.449166	-6.097106	-0.493246
20	Р	6.923589	0.780545	0.882373	67	Н	-3.770189	-5.985587	-1.884498
21	0	6.998917	-0.641374	1.350297	68	Ν	4.911364	3.733093	-2.747430
22	С	7.639596	1.023829	-0.761400	69	Ν	5.544414	-0.343179	-2.802859
23	С	7.752091	1.935876	2.019700	70	С	4.062762	2.976377	-2.551060
24	С	7.377760	2.140851	-1.559542	71	С	4.508179	0.113721	-2.581399
25	С	8.445301	-0.011749	-1.242883	72	С	2.974038	2.051259	-2.324587
26	С	8.270755	3.177626	1.638866	73	С	3.190128	0.657932	-2.341816
27	С	7.853895	1.512807	3.349473	74	N	1.763141	2.588736	-2.126124
28	С	7.924239	2.225530	-2.837738	75	Ν	2.192608	-0.221545	-2.172717
29	Н	6.718481	2.938522	-1.212239	76	С	0.785602	1.726583	-1.954030
30	С	8.999184	0.081982	-2.517683	77	С	1.001642	0.305278	-1.985013
31	Н	8.604568	-0.890660	-0.615094	78	С	-0.640358	1.967701	-1.711164
32	С	8.865198	4.003481	2.592395	79	С	-0.290227	-0.358145	-1.780066
33	Н	8.232276	3.496069	0.594705	80	С	-1.232443	0.687137	-1.597069
34	С	8.450994	2.340542	4.298058	81	С	-1.430079	3.086212	-1.570293
35	Н	7.473816	0.524793	3.618384	82	С	-0.713581	-1.664858	-1.735482
36	С	8.737697	1.196765	-3.313606	83	С	-2.591347	0.471652	-1.332075
37	Н	7.692260	3.089008	-3.462750	84	C	-2.805127	2.899785	-1.287371
38	Н	9.622827	-0.727721	-2.899322	85	н	-1.010982	4.090152	-1.648114
39	C	8 951490	3 586970	3.920792	86	C	-2.093180	-1.914231	-1.499502
40	н	9.271953	4,970807	2.294107	87	н	-0.021455	-2.495691	-1.877838
41	н	8 532359	2,009269	5 334394	88	C	-3 396194	1.645902	-1 148959
42	н	9 160140	1.259083	-4 317843	89	c	-3 005224	-0.893908	-1 302577
42	н	9 420022	4 233536	4 663051	90	н	-3 431274	3 780817	-1 135/2977
44	D	0 477346	-4 1263/3	1 456832	01	н	-3.731277	_2 048334	-1.133720
-++ //5	1	0.4//340	-1 670150	2 826050	02	п С	4 925040	1 547515	0 002510
-+ J	U	0.175030	-7.022430	2.030030	92	U	-+.033940	1.34/313	-0.005510

93	Н	-4.055177	-1.140911	-1.140619	16	Н	-1.905601	0.333198	1.229110
94	С	-5.268394	0.743314	0.261421	17	Н	-1.800712	-2.137133	1.486913
95	С	-5.792558	2.287347	-1.511792	18	Н	2.523284	-2.003779	1.354887
96	С	-6.615067	0.667066	0.599205	19	S	0.415392	2.220855	0.780879
97	Н	-4.536189	0.174704	0.838254	20	Р	6.644825	1.177769	0.888639
98	С	-7.139516	2.228420	-1.170010	21	0	6.746910	-0.288147	1.167679
99	Н	-5.473722	2.915246	-2.345786	22	С	7.493177	1.696047	-0.618311
100	С	-7.559947	1.411982	-0.115025	23	С	7.231622	2.282461	2.212684
101	Н	-6.946874	0.026881	1.417781	24	С	7.842622	3.022455	-0.899208
102	Н	-7.877203	2.819396	-1.714616	25	С	7.756605	0.681962	-1.543760
103	Ν	-8.926394	1.340950	0.227776	26	С	8.597852	2.583176	2.288968
104	С	-9.971509	1.062359	-0.650874	27	С	6.370843	2.731185	3.220984
105	С	-9.455946	1.533133	1.502492	28	С	8.448875	3.330933	-2.112941
106	С	-9.928815	0.761354	-2.016135	29	Н	7.654637	3.812702	-0.167692
107	C	-11.190437	1.074623	0.065739	30	С	8.351912	1.001458	-2.762525
108	C	-8.805317	1.871888	2.693404	31	Н	7.481884	-0.347427	-1.306358
109	C	-10.860104	1.377224	1.445494	32	C	9.091278	3.336714	3.351441
110	C	-11 134813	0.496141	-2 655384	33	н	9 277442	2 227892	1 510863
111	н	-8 985064	0.726589	-2 560652	34	C	6 866809	3 485421	4 283183
112	C	-12 389897	0.804496	-0.601313	35	н	5 306361	2 489473	3 182309
112	C C	-9 587047	2 027717	3 832636	36	n C	8 696728	2.321795	-3 044655
114	с u	7 725651	2.027717	2 728004	30	с u	8 721202	1 262785	2 228047
114	n C	-11 623662	1 539625	2.728904	38	н	8 538005	4.302783	-2.338047
115	C	12 255877	0.521456	1.061202	20	II C	0.336073	2 700520	-3.492102
117	ч	-12.555677	0.321430	-1.901205	39 40	с и	0.225075	2 560192	4.540972
117	п	-11.129008	0.239710	-3./2043/	40	п	6 190927	2.822422	5.405155
118	н	-13.336289	0.812436	-0.05/991	41	н	0.189827	3.833422	5.064510
119	U U	-10.981316	1.859112	3./96130	42	н	9.160264	2.570386	-4.000663
120	н	-9.103904	2.290844	4.//4/32	43	н	8.612996	4.382023	5.177959
121	Н	-12.707977	1.420/42	2.5/3645	44	Р	0.464574	-4.043994	1.745072
122	Н	-13.282485	0.310125	-2.495600	45	0	0.371993	-4.353411	3.204679
123	Н	-11.562246	1.987510	4.709834	46	C	2.022917	-4.531694	0.962585
C DI	D DDT (47	С	-0.887610	-4.813682	0.799467
CZPhA	AP:PPT S	s ₁ state			48	С	2.442963	-4.035851	-0.280895
1	С	4.867008	1.618936	0.695525	49	С	2.841108	-5.402733	1.686215
2	С	4.390915	2.910269	0.418744	50	С	-0.708451	-5.430161	-0.443313
3	С	3.024741	3.175147	0.408318	51	С	-2.141844	-4.859245	1.422246
4	С	2.147515	2.116192	0.682191	52	С	3.681180	-4.412180	-0.794378
5	С	2.609994	0.801557	0.900295	53	Н	1.837315	-3.317185	-0.841269
6	С	3.977777	0.554847	0.905950	54	С	4.075570	-5.786441	1.160461
7	Н	5.094818	3.718415	0.209958	55	Н	2.505376	-5.752953	2.664845
8	Н	2.649045	4.176190	0.195962	56	С	-1.784789	-6.052473	-1.075078
9	Н	4.394291	-0.439044	1.093951	57	Н	0.276864	-5.442844	-0.913539
10	С	0.254648	0.519182	1.089326	58	С	-3.219608	-5.466342	0.780560
11	С	-0.945429	-0.183825	1.253858	59	Н	-2.255444	-4.441693	2.425744
12	С	-0.873906	-1.566111	1.408473	60	С	4.494300	-5.290452	-0.073186
13	С	0.362281	-2.231816	1.427292	61	Н	4.018456	-3.998698	-1.746049
14	С	1.556137	-1.500286	1.316404	62	Н	4.719634	-6.461608	1.725445
15	С	1.505813	-0.129173	1.118849	63	С	-3.041580	-6.060922	-0.469514

64	Н	-1.638936	-6.537481	-2.041261	112	С	-12.135372	1.635366	-0.548475
65	Н	-4.196043	-5.495183	1.266248	113	С	-9.040928	1.990478	3.846200
66	Н	5.469119	-5.574319	-0.472231	114	Н	-7.238398	1.819408	2.659577
67	Н	-3.882483	-6.547192	-0.966486	115	С	-11.166073	1.928990	2.674984
68	Ν	5.332182	2.538241	-2.906917	116	С	-12.186346	1.485114	-1.929193
69	Ν	5.658270	-1.559063	-2.646018	117	Н	-11.068373	1.217979	-3.758779
70	С	4.413153	1.856621	-2.745421	118	Н	-13.052572	1.727418	0.035668
71	С	4.631628	-1.032233	-2.566183	119	С	-10.445035	2.031709	3.858783
72	С	3.242073	1.037423	-2.546890	120	Н	-8.494049	2.086285	4.785346
73	С	3.348489	-0.388631	-2.469886	121	Н	-12.256404	1.974679	2.681749
74	Ν	2.080315	1.674784	-2.440890	122	Н	-13.150408	1.464845	-2.438173
75	Ν	2.274846	-1.174171	-2.307051	123	Н	-10.970818	2.152941	4.806283
76	С	1.012379	0.905129	-2.276231					
77	С	1.115679	-0.555325	-2.221592	CzPh	AP:PPT S	S ₃ state		
78	С	-0.360096	1.263501	-2.072560	1	С	5.293089	1.666712	0.795835
79	С	-0.214256	-1.088722	-2.013963	2	С	4.884072	2.998723	0.536104
80	С	-1.066178	0.041510	-1.897676	3	С	3.546080	3.329864	0.467969
81	С	-1.071015	2.477823	-1.958141	4	С	2.602136	2.301859	0.650622
82	С	-0.763538	-2.368933	-1.908111	5	С	2.998788	0.957054	0.886633
83	С	-2.443168	-0.043522	-1.599302	6	С	4.361433	0.650431	0.966618
84	С	-2.431139	2.415848	-1.646355	7	Н	5.638149	3.772802	0.378870
85	Н	-0.572018	3.436512	-2.103317	8	Н	3.226583	4.351501	0.262920
86	С	-2.139885	-2.474204	-1.663535	9	Н	4.721305	-0.364537	1.157507
87	Н	-0.150498	-3.262160	-2.028813	10	С	0.634019	0.777999	0.881854
88	С	-3.137149	1.215113	-1.434328	11	С	-0.596758	0.131821	0.943751
89	С	-2.969951	-1.356964	-1.509479	12	С	-0.599401	-1.264880	1.151813
90	Н	-2.975779	3.353061	-1.515223	13	С	0.588597	-1.973253	1.311058
91	Н	-2.584618	-3.468508	-1.585017	14	С	1.822504	-1.292232	1.244652
92	С	-4.555009	1.278540	-1.038315	15	С	1.849821	0.080495	1.016766
93	Н	-4.035824	-1.512541	-1.346199	16	Н	-1.532842	0.681654	0.830020
94	С	-5.078078	0.451856	-0.025275	17	Н	-1.558330	-1.788453	1.165239
95	С	-5.426512	2.212399	-1.629538	18	Н	2.760129	-1.839421	1.369130
96	С	-6.405804	0.544241	0.371376	19	S	0.889239	2.482302	0.594945
97	Н	-4.425604	-0.270348	0.468170	20	Р	7.048640	1.126758	0.875883
98	С	-6.753006	2.317567	-1.232801	21	0	7.102278	-0.306557	1.297982
99	Н	-5.053380	2.857904	-2.426272	22	С	7.684431	1.422459	-0.790329
100	С	-7.256277	1.479188	-0.230841	23	С	7.862100	2.324843	1.975095
101	Н	-6.798855	-0.112675	1.148728	24	С	8.075651	2.678067	-1.269259
102	Н	-7.412339	3.054684	-1.693538	25	С	7.671472	0.312221	-1.640027
103	Ν	-8.605870	1.574595	0.166885	26	С	9.234191	2.565524	1.828660
104	С	-9.708320	1.540826	-0.684458	27	С	7.167721	2.915753	3.037226
105	С	-9.060095	1.713943	1.476240	28	С	8.452807	2.818275	-2.601441
106	С	-9.753678	1.370369	-2.072155	29	Н	8.091655	3.545581	-0.604567
107	С	-10.888892	1.660510	0.084931	30	С	8.036330	0.463595	-2.976165
108	С	-8.328297	1.835543	2.662256	31	Н	7.359219	-0.659434	-1.252512
109	С	-10.473277	1.772036	1.470519	32	С	9.897777	3.401094	2.724082
110	С	-11.005219	1.348644	-2.677521	33	Н	9.784125	2.098428	1.008314
111	Н	-8.843029	1.248787	-2.658765	34	С	7.833560	3.752516	3.931203

35	Н	6.101415	2.719667	3.171972	83	С	-2.777046	-0.106768	-1.574331
36	С	8.426971	1.713475	-3.453841	84	С	-2.720691	2.339307	-1.593836
37	Н	8.757987	3.794554	-2.980162	85	Н	-0.852964	3.340308	-2.071956
38	Н	8.003797	-0.399854	-3.641898	86	С	-2.502311	-2.546427	-1.635940
39	С	9.197128	3.997145	3.772945	87	Н	-0.532119	-3.369729	-2.024761
40	Н	10.965963	3.586175	2.603757	88	С	-3.445823	1.154319	-1.391281
41	Н	7.286526	4.211777	4.755625	89	С	-3.313149	-1.411825	-1.464741
42	Н	8.709816	1.831483	-4.501104	90	Н	-3.249512	3.283633	-1.445088
43	Н	9.717695	4.652672	4.472737	91	Н	-2.962591	-3.531688	-1.540790
44	Р	0.604163	-3.739001	1.828963	92	С	-4.868576	1.230229	-0.988039
45	0	0.565600	-3.859292	3.318621	93	Н	-4.375294	-1.549244	-1.261923
46	С	2.104119	-4.404320	1.067194	94	С	-5.370164	0.467581	0.079939
47	С	-0.829372	-4.540021	1.046322	95	С	-5.752227	2.103653	-1.641219
48	С	2.510455	-4.079549	-0.235152	96	С	-6.702353	0.557427	0.468019
49	С	2.891227	-5.236430	1.868043	97	Н	-4.699796	-0.203585	0.620324
50	С	-0.745524	-5.308662	-0.119179	98	С	-7.080988	2.215953	-1.245618
51	С	-2.046020	-4.451596	1.735320	99	Н	-5.387647	2.699580	-2.479827
52	С	3.706031	-4.594807	-0.731489	100	С	-7.567279	1.435441	-0.192930
53	Н	1.926578	-3.394949	-0.859159	101	Н	-7.085057	-0.052112	1.288170
54	С	4.082004	-5.756156	1.360402	102	Н	-7.755028	2.908847	-1.751768
55	Н	2.566373	-5.448933	2.888958	103	Ν	-8.922406	1.530831	0.198769
56	С	-1.878179	-5.959932	-0.606940	104	С	-10.021537	1.371260	-0.639575
57	Н	0.209442	-5.417544	-0.637702	105	С	-9.379910	1.791053	1.486539
58	С	-3.180080	-5.088618	1.235244	106	С	-10.059614	1.063245	-2.003685
59	Н	-2.085367	-3.906333	2.681501	107	С	-11.206253	1.531418	0.116542
60	С	4.487531	-5.434243	0.065972	108	С	-8.650918	2.052583	2.651564
61	Н	4.039573	-4.319381	-1.732771	109	С	-10.794608	1.800969	1.480868
62	Н	4.702505	-6.401205	1.983917	110	С	-11.308795	0.939515	-2.600955
63	С	-3.095509	-5.844118	0.065004	111	Н	-9.143446	0.918512	-2.576603
64	Н	-1.807002	-6.567195	-1.510473	112	С	-12.450765	1.401881	-0.509497
65	Н	-4.126740	-5.015301	1.772403	113	С	-9.366836	2.303905	3.816516
66	Н	5.428693	-5.825761	-0.322759	114	Н	-7.560804	2.066433	2.644746
67	Н	-3.979683	-6.356430	-0.317829	115	С	-11.490532	2.056780	2.667291
68	Ν	5.105466	2.269521	-2.633296	116	С	-12.495116	1.110810	-1.867302
69	Ν	5.302515	-1.780983	-2.382356	117	Н	-11.366644	0.700665	-3.663963
70	С	4.139602	1.639055	-2.551854	118	Н	-13.371344	1.524340	0.063776
71	С	4.280417	-1.239416	-2.374558	119	С	-10.772036	2.302493	3.830837
72	С	2.931267	0.862237	-2.439514	120	Н	-8.822515	2.510238	4.739330
73	С	3.003909	-0.574153	-2.361114	121	Н	-12.581845	2.066117	2.674791
74	Ν	1.779499	1.523879	-2.397692	122	Н	-13.457320	1.007982	-2.369877
75	Ν	1.914516	-1.333889	-2.265905	123	Н	-11.300177	2.502168	4.763672
76	С	0.686429	0.781798	-2.287089					
77	С	0.759043	-0.689980	-2.232258	CzPhA	AP:PPT	T ₁ state		
78	С	-0.677906	1.170240	-2.089947	1	С	-4.822946	-1.529031	0.741019
79	С	-0.565439	-1.195187	-2.037714	2	С	-4.331079	-2.847379	0.681887
80	С	-1.400797	-0.040035	-1.908175	3	С	-2.970009	-3.105683	0.780927
81	С	-1.360851	2.385280	-1.937057	4	С	-2.096490	-2.024020	0.942839
82	С	-1.133257	-2.468403	-1.907698	5	С	-2.568623	-0.698399	0.963026

6	С	-3.945128	-0.455525	0.860816	54	С	-4.080058	6.060326	0.953340
7	Н	-5.023043	-3.682102	0.551659	55	Н	-2.389483	6.051255	2.322166
8	Н	-2.592796	-4.127604	0.733046	56	С	1.549211	5.909663	-1.834560
9	Н	-4.357630	0.557788	0.886230	57	Н	-0.483688	5.288987	-1.479665
10	С	-0.230315	-0.367164	1.195999	58	С	3.090289	5.618463	0.003891
11	С	0.945278	0.384040	1.316261	59	Н	2.236599	4.804747	1.821555
12	С	0.848227	1.767837	1.314314	60	С	-4.618425	5.509985	-0.208275
13	С	-0.401508	2.416517	1.210425	61	Н	-4.335064	4.102227	-1.825911
14	С	-1.563778	1.657006	1.127593	62	Н	-4.646664	6.798781	1.522238
15	С	-1.484401	0.260040	1.101562	63	С	2.834164	6.031750	-1.304340
16	Н	1.916751	-0.107934	1.391807	64	Н	1.339460	6.257178	-2.847257
17	Н	1.761430	2.363390	1.382986	65	Н	4.087262	5.739373	0.430446
18	Н	-2.544059	2.133218	1.076198	66	Н	-5.609516	5.814346	-0.547755
19	S	-0.353619	-2.114341	1.114956	67	Н	3.633256	6.467841	-1.905997
20	Р	-6.597677	-1.090890	0.780348	68	Ν	-5.239642	-3.027109	-2.726832
21	0	-6.768337	0.392324	0.677681	69	Ν	-5.684144	1.033360	-2.619911
22	С	-7.439649	-1.998954	-0.542274	70	С	-4.333575	-2.329322	-2.570868
23	С	-7.208008	-1.846436	2.326207	71	С	-4.647628	0.539167	-2.499021
24	С	-7.679807	-3.377500	-0.498259	72	С	-3.182149	-1.470154	-2.401271
25	С	-7.842251	-1.248312	-1.650280	73	С	-3.338981	-0.054887	-2.378943
26	С	-8.587352	-2.045820	2.471808	74	Ν	-1.997091	-2.059044	-2.290089
27	С	-6.355114	-2.130844	3.397896	75	Ν	-2.297760	0.781519	-2.266525
28	С	-8.297055	-4.006409	-1.575717	76	С	-0.962446	-1.234448	-2.160794
29	Н	-7.403544	-3.958540	0.385743	77	С	-1.120719	0.205467	-2.163472
30	С	-8.459070	-1.885097	-2.726377	78	С	0.425198	-1.528224	-1.992331
31	Н	-7.659760	-0.171829	-1.656046	79	С	0.204428	0.809200	-2.025691
32	С	-9.103509	-2.533656	3.669476	80	С	1.098075	-0.261067	-1.889552
33	Н	-9.258621	-1.820628	1.639376	81	С	1.208202	-2.738389	-1.937197
34	С	-6.874111	-2.619946	4.596733	82	С	0.690715	2.124165	-2.013344
35	Н	-5.279348	-1.970236	3.299679	83	С	2.481122	-0.107883	-1.683306
36	С	-8.680505	-3.260391	-2.690988	84	С	2.547514	-2.616159	-1.732767
37	Н	-8.481171	-5.081206	-1.546061	85	Н	0.729383	-3.711576	-2.036847
38	Н	-8.765899	-1.301815	-3.595735	86	С	2.060739	2.301358	-1.857892
39	С	-8.246185	-2.823088	4.732136	87	Н	0.022707	2.977083	-2.127648
40	Н	-10.178247	-2.688406	3.774858	88	С	3.238754	-1.344518	-1.515630
41	Н	-6.202747	-2.841366	5.427605	89	С	2.951547	1.215114	-1.701837
42	Н	-9.159450	-3.756861	-3.536516	90	Н	3.142574	-3.525787	-1.644831
43	Н	-8.650741	-3.207235	5.669919	91	Н	2.465692	3.315557	-1.849520
44	Р	-0.487593	4.236944	1.365450	92	С	4.614283	-1.370758	-1.063452
45	0	-0.254427	4.718653	2.762291	93	Н	4.017660	1.425071	-1.623580
46	С	-2.100615	4.702494	0.676642	94	С	5.120087	-0.402849	-0.160828
47	С	0.782017	4.916371	0.236913	95	С	5.500120	-2.399791	-1.467324
48	С	-2.642840	4.151296	-0.494356	96	С	6.427200	-0.449537	0.293539
49	С	-2.822794	5.654032	1.401562	97	Н	4.458417	0.378598	0.212471
50	С	0.524899	5.355811	-1.066054	98	С	6.809591	-2.445131	-1.021135
51	С	2.064491	5.077444	0.777471	99	Н	5.157743	-3.162673	-2.167123
52	С	-3.902396	4.553413	-0.931886	100	С	7.291761	-1.467927	-0.136154
53	Н	-2.110452	3.374228	-1.051285	101	Н	6.797399	0.310108	0.982942
				1					

102	Н	7.473550	-3.248986	-1.341188	25	С	8.332742	-0.477521	-0.462799
103	Ν	8.618843	-1.513904	0.318651	26	С	8.166500	3.541590	1.172052
104	С	9.750532	-1.678340	-0.483622	27	С	7.465087	2.586594	3.287440
105	С	9.030332	-1.400334	1.648890	28	С	8.144607	1.156399	-2.726904
106	С	9.848365	-1.780871	-1.874853	29	Н	6.880360	2.425290	-1.544164
107	С	10.900382	-1.669281	0.337881	30	С	8.993819	-0.830549	-1.636523
108	С	8.262446	-1.276805	2.811120	31	Н	8.363287	-1.114341	0.423424
109	С	10.439409	-1.492754	1.702558	32	С	8.715435	4.629407	1.850265
110	С	11.119975	-1.906788	-2.424118	33	Н	8.255396	3.479168	0.085462
111	Н	8.964937	-1.751276	-2.512401	34	С	8.017955	3.674516	3.959899
112	С	12.167746	-1.796739	-0.238443	35	Н	6.994870	1.764120	3.830984
113	С	8.936940	-1.214188	4.025912	36	С	8.899045	-0.016184	-2.764763
114	Н	7.173767	-1.243321	2.774955	37	Н	8.037991	1.781894	-3.614093
115	С	11.094194	-1.427916	2.936203	38	Н	9.568859	-1.756520	-1.677815
116	С	12.270142	-1.922105	-1.618714	39	С	8.637523	4.697444	3.241384
117	Н	11.222900	-1.990111	-3.506941	40	Н	9.215656	5.420667	1.290220
118	Н	13.061108	-1.791279	0.388157	41	Н	7.972279	3,720785	5.048935
119	С	10.337911	-1.281333	4.092835	42	Н	9.402879	-0.307134	-3.687846
120	н	8 360456	-1.115800	4 946784	43	н	9.072478	5,547702	3.769100
121	н	12 181971	-1 497774	2 987092	44	р	0 234880	-3 611250	1 845911
122	н	13 250923	-2 023867	-2.083967	45	0	0.061351	-3 703253	3 328404
122	н	10.832984	-1 227331	5.062740	46	C C	1 805479	-4 271080	1 228460
125		10.052704	-1.227331	5.002740	40	C	-1.098040	-4.271000	0.961439
CzPh/	AP:PPT 1	F₂ state			48	C C	2 33//70	-3.9697/3	-0.035796
1	C	5.040066	1 620078	0 721073	40	C	2.554750	5 001770	2 100604
2	C	4 673221	2 067262	0.721075	50	C	0.876300	5 20/272	0.1/3860
2	C	2 220010	2.90/203	0.451452	51	c	-0.870300	-5.50+575	1 500102
3	c	2.262010	2.252145	0.574402	51	c	-2.363421	-4.570522	0.411762
4	C	2.303818	2.555145	0.3/4012	52	U U	3.309302	-4.4918/4	-0.411/62
5	C	2./14990	1.006415	0.786757	53	н	1.821128	-3.28/420	-0./19605
0	U U	4.05/441	0.052551	0.241(20	54	U U	3./4524/	-5.622968	1./21460
/	н	5.442320	3./34//8	0.341630	55	Н	2.098099	-5.288233	3.099980
8	Н	3.051017	4.377252	0.186/99	56	c	-1.941123	-5.994912	-0.721612
9	Н	4.366307	-0.368154	1.113679	57	Н	0.130945	-5.424625	-0.547966
10	c	0.335182	0.914098	0.914144	58	С	-3.448/51	-5.053216	0.918023
11	С	-0.919285	0.287687	1.092429	59	Н	-2.533987	-3.791450	2.419662
12	С	-0.948795	-1.084899	1.308927	60	С	4.270643	-5.322462	0.465935
13	С	0.235540	-1.844248	1.321377	61	Н	3.992089	-4.228924	-1.382487
14	С	1.482560	-1.197477	1.169155	62	Н	4.302278	-6.260158	2.409561
15	С	1.536937	0.166367	0.962619	63	С	-3.228074	-5.860336	-0.199044
16	Н	-1.840519	0.871483	1.061936	64	Н	-1.763820	-6.644457	-1.579815
17	Н	-1.912240	-1.580596	1.438138	65	Н	-4.450118	-4.968440	1.342482
18	Н	2.411742	-1.765597	1.223685	66	Н	5.241654	-5.723389	0.171663
19	S	0.628431	2.592292	0.655084	67	Н	-4.060001	-6.399629	-0.654492
20	Р	6.745058	1.072440	1.128293	68	Ν	5.183631	2.711037	-3.216095
21	0	6.664004	-0.101027	2.056090	69	Ν	5.699120	-1.352551	-2.414621
22	С	7.590505	0.706519	-0.421611	70	С	4.312999	1.994678	-2.962812
23	С	7.528362	2.525155	1.890769	71	С	4.653867	-0.859866	-2.449344
24	С	7.492514	1.521779	-1.552071	72	С	3.184488	1.142761	-2.674364

73	С	3.341377	-0.264879	-2.473385	121	Н	-12.279099	1.994531	2.650641
74	Ν	1.999872	1.744286	-2.618830	122	Н	-13.210628	0.697691	-2.326221
75	Ν	2.297616	-1.074973	-2.269723	123	Н	-10.975656	2.556817	4.695451
76	С	0.961982	0.951965	-2.400015					
77	С	1.110235	-0.495452	-2.251528	CzPhA	P:TPBi	S ₀ state		
78	С	-0.418831	1.284645	-2.216329	1	С	-0.767988	-1.487976	-1.460700
79	С	-0.198858	-1.052998	-2.007290	2	С	-0.055329	-3.783064	-1.147017
80	С	-1.082324	0.054159	-1.955629	3	С	1.519521	-1.975109	-0.824959
81	С	-1.148026	2.473848	-2.147403	4	С	0.518514	-1.055312	-1.137804
82	С	-0.718633	-2.341291	-1.798557	5	С	-1.055006	-2.855702	-1.456828
83	С	-2.462916	-0.045981	-1.627604	6	С	-1.783063	-0.476797	-1.812971
84	С	-2.510582	2.391053	-1.802487	7	С	1.242075	-3.341560	-0.854436
85	Н	-0.681376	3.439243	-2.344068	8	С	-0.417317	-5.213324	-1.153981
86	С	-2.099748	-2.466157	-1.536700	9	С	2.849900	-1.484891	-0.405813
87	Н	-0.091791	-3.230042	-1.876408	10	Н	0.740305	0.011230	-1.121652
88	С	-3.186338	1.184361	-1.527186	11	Н	-2.051408	-3.225969	-1.704044
89	С	-2.954312	-1.374030	-1.439625	12	Ν	-1.551469	0.546596	-2.588714
90	Н	-3.081002	3.318892	-1.715596	13	Ν	-3.097216	-0.538622	-1.371999
91	Н	-2.516940	-3.465234	-1.401824	14	Н	2.043125	-4.047308	-0.631387
92	С	-4.606815	1.229725	-1.110548	15	Ν	0.132027	-6.138068	-0.276648
93	Н	-4.013889	-1.541706	-1.248372	16	Ν	-1.279084	-5.741323	-1.977977
94	С	-5.066450	0.504476	0.001573	17	Ν	2.978754	-0.560237	0.627727
95	С	-5.529795	2.040281	-1.789959	18	Ν	3.984277	-1.811499	-0.949883
96	С	-6.394404	0.569429	0.408320	19	С	-2.753980	1.213176	-2.695459
97	Н	-4.367648	-0.121844	0.560020	20	С	-3.745075	0.550945	-1.941756
98	С	-6.854967	2.128384	-1.377134	21	С	-3.621755	-1.345633	-0.326912
99	Н	-5.200228	2.606578	-2.663040	22	С	-0.442800	-7.358018	-0.595378
100	С	-7.298636	1.385732	-0.278722	23	С	0.947655	-5.888015	0.859726
101	Н	-6.743103	-0.012279	1.263027	24	С	-1.321416	-7.081768	-1.664765
102	Н	-7.559358	2.773661	-1.904380	25	С	4.336161	-0.280573	0.718012
103	Ν	-8.648388	1.457874	0.132988	26	С	1.972729	-0.133675	1.533237
104	С	-9.757077	1.231787	-0.677792	27	С	4.941879	-1.080478	-0.276483
105	С	-9.091205	1.759840	1.417354	28	С	-3.064344	2.399567	-3.374221
106	С	-9.810120	0.864514	-2.026539	29	С	-5.046506	1.048300	-1.810048
107	С	-10.932390	1.390178	0.093026	30	С	-4.858436	-1.972015	-0.489329
108	С	-8.350653	2.092652	2.556543	31	С	-2.913383	-1.483628	0.872610
109	С	-10.505288	1.729180	1.437064	32	С	-0.306251	-8.634777	-0.043154
110	С	-11.065541	0.680089	-2.594521	33	С	0.513182	-4.997706	1.845515
111	Н	-8.900609	0.720714	-2.610171	34	С	2.179814	-6.531962	0.981283
112	С	-12.183381	1.198747	-0.503300	35	С	-2.078353	-8.117683	-2.230636
113	С	-9.053756	2.373436	3.722641	36	С	5.085328	0.536221	1.573301
114	Н	-7.261744	2.138240	2.529788	37	С	1.915421	1.206881	1.917179
115	С	-11.188287	2.015904	2.623838	38	С	1.051454	-1.048244	2.058201
116	С	-12.243140	0.848962	-1.846608	39	С	6.333792	-1.066700	-0.441330
117	Н	-11.135065	0.394384	-3.645177	40	С	-4.359338	2.884382	-3.271331
118	Н	-13.096876	1.319268	0.081550	41	Н	-2.297896	2.913688	-3.954585
119	С	-10.457719	2.332152	3.762607	42	С	-5.334997	2.219039	-2.499666
120	Н	-8.500139	2.635226	4.625623	43	Н	-5.795463	0.557518	-1.186277

44	С	-5.388472	-2.734477	0.550133	91	С	2.619923	2.198510	-1.737579
45	Н	-5.391131	-1.867008	-1.435338	92	С	4.381382	4.332605	0.616496
46	С	-3.442458	-2.265324	1.895921	93	С	9.070927	3.222014	-0.235053
47	Н	-1.950532	-0.981750	0.995888	94	Ν	8.871832	0.771292	-2.833702
48	С	-1.068272	-9.643836	-0.617437	95	С	1.923092	4.075808	0.326097
49	Н	0.362968	-8.828089	0.795961	96	С	1.271543	2.469863	-1.392614
50	С	1.330509	-4.735365	2.942552	97	Н	2.857747	1.468221	-2.513816
51	Н	-0.458825	-4.512543	1.733516	98	С	4.204168	5.193672	1.675487
52	С	2.984766	-6.274497	2.090078	99	Ν	10.200607	3.286749	-0.010039
53	Н	2.504998	-7.215524	0.195263	100	С	0.902424	3.351739	-0.378201
54	С	-1.938732	-9.390539	-1.698088	101	С	1.768066	4.960766	1.432520
55	Н	-2.753017	-7.908538	-3.060815	102	Н	0.475144	1.952138	-1.936353
56	С	6.464976	0.530553	1.395857	103	С	2.873859	5.499550	2.068713
57	Н	4.621408	1.137488	2.355568	104	Н	5.056175	5.614248	2.211149
58	С	0.932659	1.638404	2.806535	105	С	-0.526900	3.402526	0.010644
59	Н	2.635344	1.910173	1.501172	106	Н	0.768832	5.202010	1.798101
60	С	0.065900	-0.605006	2.937075	107	Н	2.719187	6.170505	2.914602
61	Н	1.115018	-2.100891	1.780708	108	С	-1.253822	4.589549	0.166247
62	С	7.082168	-0.262823	0.406709	109	С	-1.197204	2.187078	0.209082
63	Н	6.798923	-1.678932	-1.214092	110	С	-2.614014	4.561767	0.468693
64	Н	-4.635830	3.806224	-3.785059	111	Н	-0.757687	5.551691	0.024184
65	Н	-6.336275	2.648702	-2.425714	112	С	-2.556709	2.151105	0.473049
66	С	-4.680485	-2.889801	1.740388	113	Н	-0.637657	1.250602	0.145844
67	Н	-6.355707	-3.221075	0.420318	114	С	-3.288985	3.339208	0.580125
68	Н	-2.888829	-2.377870	2.829846	115	Н	-3.159345	5.493951	0.610654
69	Н	-0.991744	-10.657929	-0.222896	116	Н	-3.062952	1.194107	0.570937
70	С	2.566768	-5.371225	3.066342	117	Ν	-4.685850	3.288364	0.767897
71	Н	0.999326	-4.033470	3.709853	118	С	-5.371275	2.284949	1.458921
72	Н	3.950961	-6.771804	2.182055	119	С	-5.621117	4.046337	0.055367
73	Н	-2.514342	-10.216333	-2.118038	120	С	-4.889006	1.293362	2.323781
74	Н	7.085123	1.151593	2.045243	121	С	-6.754887	2.405460	1.198296
75	С	-0.002400	0.737936	3.312563	122	С	-5.429807	5.092996	-0.854534
76	Н	0.893529	2.692315	3.087899	123	С	-6.914617	3.533969	0.304872
77	Н	-0.647559	-1.323479	3.345265	124	С	-5.807054	0.406558	2.874828
78	Н	8.168938	-0.236499	0.303683	125	Н	-3.831022	1.211846	2.569572
79	Н	-5.093206	-3.496236	2.547463	126	С	-7.661079	1.504736	1.767850
80	Н	3.204221	-5.162120	3.925981	127	С	-6.551168	5.626435	-1.480003
81	Н	-0.776475	1.078497	4.001387	128	Н	-4.437231	5.460438	-1.106250
82	С	5.073952	2.814500	-1.042621	129	С	-8.029409	4.089174	-0.331740
83	С	7.187422	2.243634	-1.508852	130	С	-7.180304	0.498862	2.595961
84	Ν	6.827070	3.866601	0.235370	131	Н	-5.446069	-0.377908	3.541616
85	С	3.609600	2.863021	-1.049331	132	Н	-8.728958	1.594921	1.561768
86	С	5.548371	3.711767	-0.026379	133	С	-7.843012	5.139817	-1.220986
87	Ν	5.886789	2.092273	-1.782193	134	Н	-6.418637	6.439746	-2.195167
88	С	7.654777	3.121996	-0.510118	135	Н	-9.027287	3.691071	-0.139846
89	С	8.121773	1.431347	-2.257115	136	Н	-7.871115	-0.216605	3.043067
90	С	3.246820	3.796574	-0.046050	137	Н	-8.699705	5.585163	-1.727508

5. References

1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.

2. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. *Theoretical Chemistry Accounts* **2008**, *119* (5), 525-525.

3. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Physical Chemistry Chemical Physics* **2005**, *7* (18), 3297-305.

4. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104.

5. Lu, T.; Chen, F., Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33 (5), 580-92.

6. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. *J. Molec. Graphics* **1996**, *14* (1), 33-38.

Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Ekström, U.; Enevoldsen, T.; Eriksen, J. J.; Ettenhuber, P.; Fernández, B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.; Hättig, C.; Heiberg, H.; Helgaker, T.; Hennum, A. C.; Hettema, H.; Hjertenæs, E.; Høst, S.; Høyvik, I.-M.; Iozzi, M. F.; Jansík, B.; Jensen, H. J. A.; Jonsson, D.; Jørgensen, P.; Kauczor, J.; Kirpekar, S.; Kjærgaard, T.; Klopper, W.; Knecht, S.; Kobayashi, R.; Koch, H.; Kongsted, J.; Krapp, A.; Kristensen, K.; Ligabue, A.; Lutnæs, O. B.; Melo, J. I.; Mikkelsen, K. V.; Myhre, R. H.; Neiss, C.; Nielsen, C. B.; Norman, P.; Olsen, J.; Olsen, J. M. H.; Osted, A.; Packer, M. J.; Pawlowski, F.; Pedersen, T. B.; Provasi, P. F.; Reine, S.; Rinkevicius, Z.; Ruden, T. A.; Ruud, K.; Rybkin, V. V.; Sałek, P.; Samson, C. C. M.; de Merás, A. S.; Saue, T.; Sauer, S. P. A.; Schimmelpfennig, B.; Sneskov, K.; Steindal, A. H.; Sylvester-Hvid, K. O.; Taylor, P. R.; Teale, A. M.; Tellgren, E. I.; Tew, D. P.; Thorvaldsen, A. J.; Thøgersen, L.; Vahtras, O.; Watson, M. A.; Wilson, D. J. D.; Ziolkowski, M.; Ågren, H., The Dalton quantum chemistry program system. *WIREs Comput. Mol. Sci.* 2014, *4* (3), 269-284.

8. Olsen, J. M. H.; Reine, S.; Vahtras, O.; Kjellgren, E.; Reinholdt, P.; Hjorth Dundas, K. O.; Li, X.; Cukras, J.; Ringholm, M.; Hedegård, E. D.; Di Remigio, R.; List, N. H.; Faber, R.; Cabral Tenorio, B. N.; Bast, R.; Pedersen, T. B.; Rinkevicius, Z.; Sauer, S. P. A.; Mikkelsen, K. V.; Kongsted, J.; Coriani, S.; Ruud, K.; Helgaker, T.; Jensen, H. J. A.; Norman, P., Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. *J. Chem. Phys.* **2020**, *152* (21), 214115.

9. Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange–correlation functional using the Coulombattenuating method (CAM-B3LYP). *Chem. Phys. Lett.* **2004**, *393* (1-3), 51-57.

10. Tunell, I.; Rinkevicius, Z.; Vahtras, O.; Sałek, P.; Helgaker, T.; Ågren, H., Density functional theory of nonlinear triplet response properties with applications to phosphorescence. *The Journal of Chemical Physics* **2003**,

119 (21), 11024-11034.

11. Sałek, P.; Vahtras, O.; Helgaker, T.; Ågren, H., Density-functional theory of linear and nonlinear timedependent molecular properties. *The Journal of Chemical Physics* **2002**, *117* (21), 9630-9645.

12. Voityuk, A. A.; Rösch, N., Fragment charge difference method for estimating donor–acceptor electronic coupling: Application to DNA π-stacks. *The Journal of Chemical Physics* **2002**, *117* (12), 5607-5616.

13. You, Z. Q.; Hung, Y. C.; Hsu, C. P., Calculating Electron-Transfer Coupling with Density Functional Theory:

The Long-Range-Corrected Density Functionals. Journal of Physical Chemistry B 2015, 119 (24), 7480-90.