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I. Goldschmidt tolerance factor (t), octahedral factor (µ) and new tolerance factor (τ) of 

A2CuMCl6(A = K, Rb, M= Sb, Bi) double halide perovskites. 

Goldschmidt tolerance factor (t) and octahedral factor (µ) are given as: 

, µ=  where , , and  are the Shannon ionic radii for A+, B+, B' 
𝑡𝑑𝑝 =

𝑟𝐴 + 𝑟𝑋

2𝑟𝐵𝐵' + 𝑟𝑋 𝑟𝐵/𝑟𝑋 𝑟𝐴 𝑟𝐵 𝑟𝑋

and X− ions, respectively. 

For stable cubic perovskites, the ranges of t and µ are 0.8 ≤  ≤ 1.0 and 0.29 ≤ µ ≤ 0.55. The 𝑡𝑑𝑝

calculated values in Table S1 show that the considered perovskites are stable in cubic structures 

at room temperatures. 

Recently, Bartel et al. have reported a new tolerance factor (τ)  to predict the stability of a 

perovskite, which is given as: τ = , where  is the oxidation state 

𝑟𝑋

 𝑟𝐵
‒ 𝑛𝐴(𝑛𝐴 ‒

𝑟𝐴/𝑟𝐵

ln (𝑟𝐴/𝑟𝐵)
)

𝑛𝐴

of A, ri is the ionic radius of ion i, rA > rB by definition, and τ << 4.18 indicates perovskite 

(92% accuracy).

Table S1: Intended values of the tolerance factor tdp, octahedral factor µ and new 

tolerance coefficient τ of A2CuMCl6 perovskites

Material tdp µ τ
K2CuSbCl6 0.95 0.43 4.16
Rb2CuSbCl6 0.97 0.43 4.14
K2CuBiCl6 0.91 0.50 4.04
Rb2CuBiCl6 0.93 0.50 3.97

II. DFT simulated XRD patterns of A2CuMCl6 double halide perovskites.
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Density Functional Theory (DFT) simulations have been utilized to generate X-ray Diffraction 

(XRD) patterns for the specified materials. These simulated plots exhibit a satisfactory level of 

concurrence with experimental findings from analogous materials such as Cs2CuSbCl6 and 

Cs2AgBiCl6. [1-2]. 
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Figure S1.  The DFT simulated XRD patterns of A2CuMCl6 double halide perovskites. 

III.  Thermodynamic stability 

Reactions for decomposition of A2CuMCl6 double halide perovskites has been estimated as 

follows:

 (2)1. 𝐾2𝐶𝑢𝑆𝑏𝐶𝑙6→  2𝐾𝐶𝑙 +  𝐶𝑢𝐶𝑙 +  𝑆𝑏𝐶𝑙3

∆HD
 =  𝐸 (𝐾2𝐶𝑢𝑆𝑏𝐶𝑙6) ‒ 2𝐸(𝐾𝐶𝑙) ‒ 𝐸 (𝐶𝑢𝐶𝑙) ‒ 𝐸(𝑆𝑏𝐶𝑙3)

2. 2  (3)𝑅𝑏 𝐶𝑢𝑆𝑏𝐶𝑙6→ 2𝑅𝑏𝐶𝑙 +  𝐶𝑢𝐶𝑙 +  𝑆𝑏𝐶𝑙3

∆HD 2 =  𝐸 (𝐾 𝐶𝑢𝑆𝑏𝐶𝑙6) ‒ 2𝐸(𝐾𝐶𝑙) ‒ 𝐸 (𝐶𝑢𝐶𝑙) ‒ 𝐸(𝑆𝑏𝐶𝑙3)



3. 2  (4)𝐾 𝐶𝑢𝐵𝑖𝐶𝑙6→2𝐾𝐶𝑙 +  𝐶𝑢𝐶𝑙 + 𝐵𝑖𝐶𝑙3

∆HD
 =  𝐸 (𝐾2𝐶𝑢𝑆𝑏𝐶𝑙6) ‒ 2𝐸(𝐾𝐶𝑙) ‒ 𝐸 (𝐶𝑢𝐶𝑙) ‒ 𝐸(𝐵𝑖𝐶𝑙3)

4. 2  (5)𝑅𝑏 𝐶𝑢𝐵𝑖𝐶𝑙6→2𝑅𝑏𝐶𝑙 + 𝐶𝑢𝐶𝑙 + 𝐵𝑖𝐶𝑙3

∆HD
 =  𝐸 (𝐾2𝐶𝑢𝑆𝑏𝐶𝑙6) ‒ 2𝐸 (𝐾𝐶𝑙) ‒ 𝐸 (𝐶𝑢𝐶𝑙) ‒ 𝐸 (𝐵𝑖𝐶𝑙3)

 are respectively the total DFT energies 𝐻𝑒𝑟𝑒 𝐸(𝐴2𝐶𝑢𝑀𝐶𝑙6), 𝐸(𝐴𝐶𝑙3), 𝐸(𝐶𝑢𝐶𝑙) 𝑎𝑛𝑑 𝐸(𝑀𝐶𝑙3)

of A2CuMCl6, ACl3, CuCl and MCl3 and ∆HD is the decomposition energy.

Gibbs free energy fluctuations with respect to temperature have been graphically represented to 

affirm the thermodynamic stability of the provided materials.
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Figure S2; Gibbs free energy as a function of temperature of A2CuMCl6 halide perovskites

The Gibbs free energy plots for the A2CuMCl6 compounds, as shown in Figure S2 (a, b), 

demonstrate noticeable changes in vibrational free energy with increasing temperature across 

the given structures. Notably, a greater disparity in vibrational free energy corresponds to a 

heightened preference for a particular structure.

IV. Thermodynamic parameters: Specific heat (Cv), Debye temperature((𝜃𝐷) and 

Gruinsen parameter(γ)
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Figure S3; Plot of thermodynamic parameters (a) Specific heat, (b) Debye temperature and (d) 

Gruneisen parameter against temperature 

The graphical interpretations of Specific heat, Debye temperature and Gruinsen parameter are 

shown in Figure S3(a-c). Specific heat, denoted as Cv, characterizes the amount of energy 

required to increase the temperature of a material by one degree. In this context, Cv can be 

understood as the energy storage capacity of the material corresponding to a specific 

temperature difference. If the material's temperature is subsequently reduced back to its initial 

level, the stored energy within Cv is released. Consequently, a higher heat capacity signifies a 

greater potential for energy storage, often indicative of the material's efficiency as a 

regenerator. The specific heat plot depicted in Figure S3 (a) illustrates how Cv changes 

concerning temperature variations for the mentioned materials. At lower temperatures, Cv 

adheres to a T3 law, signifying that exclusively longwave phonons are stimulated within this 

range. Notably, as the temperature rises, all phonons become thermally excited, leading Cv to 

converge towards the Dulong limit value of 3nR (220 Jmol-1K), where R symbolizes the gas 

constant.

The Debye temperature (𝜃𝐷) holds considerable significance as a thermoelastic characteristic 

of solids. It signifies the upper limit of temperature within which the constituents exhibit 

interlinked vibrations, reaching their peak modes of vibration. Figure S3(b) visually 

demonstrates that 𝜃𝐷 exhibits a decline as temperature ascends. When temperatures are low, 

both thermal expansion and anharmonicity have limited effects, resulting in a near-constant 

Debye temperature. During this low-temperature regime, the high-frequency vibration modes 

become constrained, leaving only the acoustic modes to be activated. As temperature rises, the 

Debye temperature (𝜃𝐷) diminishes, leading to observable changes in the vibration spectra of 

the particles. Specifically, the increment in temperature prompts a reduction in 𝜃𝐷, allowing a 

broader range of vibration modes to become active. Notably, the estimated Debye temperature 

values for K2CuSbCl6, Rb2CuSbCl6 and K2CuBiCl6, Rb2CuBiCl6 at 0 GPa are 352 K,387 K, 

325 K, 355 K, respectively.

The Gruneisen parameter (γ) is used to measure the anharmonicity in the crystals. Fig. S3(c) 

represents the variations in γ with temperature, advocates rise in anharmonicity increases with 

the temperature, although the variation is sluggish. The atomic vibrations increase vigorously 

with temperature due to which γ-parameter also increases.

V. Calculations of mechanical stability parameters of A2CuMCl6 double halide 

perovskites 

In Viogt -Reuss-Hill method, Bulk and Shear moduli are presented as:



 and  , where  and  are Viogt and 
𝐵𝑉 =

(𝐶11 + 2𝐶12)

3
  𝐺𝑉 =    

(𝐶11 +  𝐶12 + 3 𝐶44)

5
  𝐵𝑉   𝐺𝑉

Reuss bounds.  The Bulk and Shear moduli in Reuss approximations are framed as below.

   and 𝐵𝑉 = 𝐵𝑅  
 𝐺𝑅 =

5(𝐶11 ‒ 𝐶12)𝐶44

4𝐶44 + 3(𝐶11 ‒ 𝐶12)

In the Hill approximation, the bulk and shear moduli are computed by taking the arithmetic mean 

of Bv, BR, and Gv, GR, respectively, as expressed by the following formulae. 

   and
𝐵 =  

(𝐵𝑉 + 𝑅𝑅)

2
𝐺 =  

(𝐺𝑉 + 𝐺𝑅)

2
  

The Young's modulus and Poison's ratio are determined from the bulk and shear moduli using 

the relations given as:

   and v
𝑌 =

9𝐵𝐺
3𝐺𝐵 + 𝐵   

=
3𝐵 ‒ 𝑌

6𝐵

Lame’s coefficients and Kleiman parameter are given by the following equations:

  ,    and   
𝜆 =

𝑣𝑌
(1 + 𝑣)(1 + 2𝑣)

𝛽 =
𝐸

2(1 + 𝑣)
𝜁 =

𝐶11 + 8𝐶12 

7𝐶11 + 2𝐶12
  

VI. Three-dimensional graphics of Young’s modulus, (b) linear compressibility, (c) Shear 

modulus, and (d) Poisson’s ratio of A2CuMCl6 perovskites

The three-dimensional graphical representations of (a) Young’s modulus, (b) linear 

compressibility, (c) Shear modulus, and (d) Poisson’s ratio for the provided materials are 

displayed below.

Figure S4; Three-dimensional graphical interpretations of Young’s modulus, (b) linear 

compressibility, (c) Shear modulus and (d) Poisson’s ratio of K2CuSbCl6 double halide 

perovskite.

(a)
(d)(c)(b)



          

Figure S5: Angular dependency of Young’s modulus, (b) linear compressibility, (c) Shear 

modulus and (d) Poisson’s ratio of Rb2CuSbCl6 double halide perovskite.

Figure S6: Three-dimensional graphical representations of Young’s modulus, (b) linear 

compressibility, (c) Shear modulus and (d) Poisson’s ratio of K2CuBiCl6 double halide 

perovskite.
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Figure S7: Spatial dependence of Young’s modulus, (b)linear compressibility, (c)Shear 

modulus and (d) Poisson’s ratio of Rb2CuBiCl6 double halide perovskite

VII. Calculation of Electronic band structure using different exchange correlational 

functionals.
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Figure S8; Electronic band structure of A2CuMCl6 double halide perovskites determined via 

(a) GGA-PBE functional, (b) GGA+U functional, (c) GGA+mBJ functional.

VIII. Thermal conductivity (κ) of A2CuMCl6 (A=K, Rb M=Sb, Bi) double perovskites 

The electronic thermal conductivity has been computed using BoltzTraP code as discussed in 

above section. Hower, the lattice thermal conductivity has been computed using Slack’s model 

which is given as [3];  where the symbols assume their usual meanings. The 
𝜅𝑙 =

𝐴𝜃3
𝐷𝑉1/3𝑚

𝛾2𝑁2/3𝑇
, 

Slack model emphasizes that the Debye temperature ( ), Gruneisen parameter ( ), 𝜃𝐷 𝛾

temperature (T), volume (V), average molar mass per atom (m), and the number of atoms per 

unit cell (N) all impact the lattice thermal conductivity. The parameter A is determined as;[3] 

. Utilizing these associated factors, the Slack model has been 

𝐴 =
2.43 × 108

1 ‒
0.514

𝛾
+

0.228

𝛾2

implemented to calibrate the lattice thermal conductivity.
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Figure S9; Calculated (a) electronic thermal conductivity, (b) lattice thermal conductivity and 

(c) total thermal conductivity in A2CuMCl6 double perovskites.
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IX. Variation of Seebeck coefficient, electrical conductivity, and figure of merit against 

carrier concentration. 
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Figure S10.  Thermoelectric parameters of A2CuMCl6 (a) Seebeck coefficient, (b) electrical 

conductivity and (c) figure of merit (zT) against carrier concentration at different temperatures 

(300 K, 600 K, 900 K)

X. Computed optical properties of A2CuMCl6 double halide perovskites.
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Figure S11; Optical coefficients of A2CuMCl6 halide perovskites (a) refractive index, (b) 

optical conductivity and (c) extinction coefficient against photon energy.

An important optical property that provides insights into the behaviour of light within a 

material is the refractive index. The variation of the refractive index with photon energy is 

depicted in Figure S11(a) The static refractive index values for K2CuSbCl6, Rb2CuSbCl6, 

K2CuBiCl6 and Rb2CuBiCl6 are 2.5, 2.55 and 2.05, 2.08 respectively. They reach a maximum 

value around 2 eV, reflecting the behaviour of the material in response to light absorption at 

different energies. The optical conductivity, denoted as σ(ω), provides insight into the available 

charge carriers for conduction. Its pattern closely mirrors that of the absorption spectra, 

depicted in Figure S11(b). Across the entire range of photon energies (0–4 eV), the 

conductivity profile exhibits alternating high and low peaks, accompanied by the presence of 

a distinctive hump at specific energy levels. Notably, the maximum conductivity is observed 

within the higher energy range. 

The extinction coefficient essentially constitutes the complex portion of the refractive index, 

illustrating the way electromagnetic waves propagate through a given medium. As depicted in 

Figure S11 (c), the extinction coefficient exhibits a division into three prominent absorption 

peaks, each centered within a distinct range of photon energies. These diverse peaks emerge 

because of electronic transitions between different energy levels.

XI. Interrelation between ZT, 

optical absorption and 

band structure
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Figure S12. Variation in the ZT and absorption coefficient of A2CuMCl6 halide perovskites 

altogether with the band profile.

XII.  Calculation of Phonon dynamics 

We utilized Density Functional Perturbation Theory (DFPT) as implemented in the Quantum 

Espresso Code to compute the phonon spectrum across various wave vectors. The dynamical 

matrix is solved to calculate phonon frequencies and displacement patterns, dielectric tensors, 

effective charges.

The electron-phonon coefficients g are defined as

.            

The phonon linewidth γqν is defined by:

,   

while the electron-phonon coupling constant λqν for mode ν at wavevector q is 
defined as

                                                       
where N (eF ) is the DOS at the Fermi level. The spectral function is defined as:

                                                                  
𝛼2𝐹(𝜔) =

1
2𝜋𝑁𝐸𝐹)∑

𝑞𝑣

𝛿(𝜔 ‒ 𝜔𝑞𝑣)
𝛾𝑞𝑣

ℎ𝜔𝑞𝑣

The electron-phonon mass enhancement parameter λ can also be defined as the first 

reciprocal momentum of the spectral function: 
𝜆 = ∑

𝑞𝑣

𝜆𝑞𝑣 = 2∫𝛼2𝐹(𝜔)

Note that a factor M−1/2 is hidden in the definition of normal modes as used in the 
code. McMillan:

                                           
or (better?)

                                             
Where,

 

XIII. k-point convergence in A2CuMCl6 double halide perovskites



To ensure the accuracy of our calculations, we conducted a comprehensive analysis of property 

convergence, encompassing key parameters such as energy (E), Seebeck coefficient (S), and 

both the imaginary (Im(ε) and real (Re(ε)) parts of the dielectric function. This investigation 

was carried out specifically for the present halide perovskites and their dependence on k-points. 

The results, as presented in Table S2 for the A2CuMCl6, confirm that utilizing 1000 k-points 

provides sufficient accuracy for calculating energy (E).

Table S2: Energies (eV) of A2CuMCl6 (A=K, Rb M=Sb, Bi) double perovskites at different k-

points calculated using PBE εxc functional.

Table S3: Seebeck coefficient (µV/K) of A2CuMCl6 (A=K, Rb M=Sb, Bi) double halide 

perovskites at different k-points calculated using HSE06 εxc functional. It's important to note 

that thermoelectric parameters are highly sensitive to k-point sampling. Therefore, we utilized 

a higher k-mesh for these calculations, and it was established that 100,000-k points proved to 

be adequate for accurately computing the thermoelectric coefficients.

Table S4: The maximum values of the real and imaginary parts of the dielectric constants for 

A2CuMCl6 (A=K, Rb; M=Sb, Bi) double halide perovskites were calculated (within the energy 

range of (0-4)) eV using the HSE06 εxc functional. Typically, a higher k-mesh than usual is 

needed to accurately compute optical parameters. It has been determined that employing a 

5000-k point mesh is sufficient for calculating the optical coefficients.

Configuration      500    1000     1500 2000

K2CuSbCl6 -329456.231 -329456.233 -329456.235 -329456.237

Rb2CuSbCl6 -458893.511 -458893.512 -458893.515 -458893.518

K2CuBiCl6 -740119.970 -740119.971 -740119.973 -740119.974

Rb2CuBiCl6 -869557.274 -869557.276 -869557.277 -869557.278

Configuration 50000 100000

K2CuSbCl6 2095.01 2100.03

Rb2CuSbCl6 1997.83 2000.10

K2CuBiCl6 2894.74 2899.95

Rb2CuBiCl6 2587.52 2600.51

2000 4000 5000Configuration

𝜀1(𝜔) 𝑖𝜀1(𝜔) 𝜀1(𝜔) 𝑖𝜀1(𝜔) 𝜀1(𝜔) 𝑖𝜀1(𝜔)
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K2CuSbCl6 5.93 4.88 5.93 4.91 5.94 4.91

Rb2CuSbCl6 6.00 5.02 6.02 5.00 6.02 5.00

K2CuBiCl6 4.96 3.44 4.95 3.45 4.95 3.45

Rb2CuBiCl6 5.00 3.55 5.01 3.54 5.01 3.54


