Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information

Ferromagnetism above Room Temperature in Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathbf{X}=\mathbf{S}, \mathbf{S e})$

Monolayers

Fanjunjie Han ${ }^{\mathrm{a}}$ and Guochun Yang ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\text {a Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting }}$ Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
${ }^{\mathrm{b}}$ State Key Laboratory of Metastable Materials Science \& Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

E-mail: yanggc468@nenu.edu.cn
Index page

1. Computational details 3
2. Structural parameters of the Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers 6
3. Basic building block of the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers and phonon dispersive curves for Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer 6
4. ELF of different faces for the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers 7
5. Crystal orbital Hamilton population (COHP) curves of the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers 7
6. AIMDs, Young's modulus $Y(\theta)$, and Poisson's ratio $v(\theta)$ for the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers 8
7. Convex hull of the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers 9
8. Elastic constants of the Janus $\mathrm{Fe}_{2} \mathrm{~S}$ and $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers 10
9. Relative energies of different magnetic configurations for the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer 10
10. Spin-polarized charge density and differential charge density of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer 10
11. Bader charge of the Janus $\mathrm{Fe}_{2} \mathrm{~S}$ and $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers 10
12. Spin-polarized electronic band structure and PDOS of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer 11
13. PDOS with spin-down state of the Janus $\mathrm{Fe}_{2} \mathrm{~S}$ monolayer 11
14. Coupling interaction strength of interlayer Fe ions with the increasing distance 11
15. Magnetic properties for the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer and angular-dependent MAE of the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers 12
16. Atomic structures of the point defects in the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers 12
17. Formation energies of the point defects of the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers 13
18. Magnetic properties for the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers with $\mathrm{Fe}-\mathrm{I}_{\mathrm{X}}$ defect 13
19. $T_{C} \mathrm{~S}$ and MAEs of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer under biaxial strains 14
20. Phonon dispersive curves for the TS of Janus $\mathrm{Fe}_{2} \mathrm{~S}$ monolayer 14
21. Structural information 14
22. References 15

Computational Details

The particle swarm optimization (PSO) method within the evolutionary algorithm as implemented in the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code ${ }^{1,2}$ was applied to find new structures of $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers. Unit cells containing 1, and 2 formula units (f.u.) were considered. In the first step, random structures with certain symmetry are constructed in which atomic coordinates are generated by the crystallographic symmetry operations. Local optimizations using the VASP code ${ }^{3}$ were done with the conjugate gradients method and stopped when Gibbs free energy changes became smaller than $1 \times 10^{-5} \mathrm{eV}$ per cell. After processing the firstgeneration structures, 60% of them with lowest Gibbs free energies are selected to construct the next generation structures by PSO. 40% of the structures in the new generation are randomly generated. A structure fingerprinting technique of bond characterization matrix is applied to the generated structures, so that identical structures are strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating 1000~1200 structures (e.g., about $20 \sim 30$ generations).

The local structural relaxations and electronic property calculations were performed in the framework of the density functional theory (DFT) ${ }^{4}$ within the generalized gradient approximation (GGA) ${ }^{5}$ as implemented in the VASP code. The projector augmented wave (PAW) method is used to treat the ion-electron interaction, in which the valence electrons of each atom are $\mathrm{Fe}: 3 d^{7} 4 s^{1}, \mathrm{~S}$: $3 s^{2} 3 p^{4}, \mathrm{Se}: 4 s^{2} 4 p^{4}$.

We calculated the cohesive energy of the Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayer by using the following expression:

$$
E_{c o h}=\left(2 E_{F e}+E_{X}-E_{F e_{2} X}\right) / 3
$$

where $E_{\mathrm{Fe}}, E_{\mathrm{X}}$ and $E_{\mathrm{Fe}_{2} X}$ are the total energies of a single Fe atom, S / Se atom and the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers, respectively.

The Young's modulus $Y(\theta)$ and Poisson's ratio $v(\theta)$ along any direction $\theta(\theta$ is the angle with respect to the positive x-direction) are defined as

$$
\begin{array}{r}
\frac{C_{11} C_{22}-C_{12}^{2}}{C_{11} s^{4}+C_{22} c^{4}+\left(\frac{C_{11} C_{22}-C_{12}^{2}}{C_{66}}-2 C_{12}\right) c^{2} s^{2}} \\
C_{12}\left(c^{4}+s^{4}\right)-\left(C_{11}+C_{22}-\frac{C_{11} C_{22}-C_{12}^{2}}{C_{66}}\right) c^{2} s^{2} \\
C_{11} s^{4}+C_{22} c^{4}+\left(\frac{C_{11} C_{22}-C_{12}^{2}}{C_{66}}-2 C_{12}\right) c^{2} s^{2}
\end{array}
$$

were $\mathrm{c}=\cos \theta$ and $\mathrm{s}=\sin \theta$.
Based on the Heisenberg model, the different magnetic configurations for the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers are given by the following expressions:

$$
\begin{gathered}
E_{F M}=E_{0}-3 J_{1} \vec{S}^{2}-6 J_{2} \vec{S}^{2}-D \vec{S}^{2}, \\
E_{\text {Neel }-A F M}=E_{0}+3 J_{1} \vec{S}^{2}-6 J_{2} \vec{S}^{2}-D \vec{S}^{2}, \\
E_{\text {Stripy }-A F M}=E_{0}+J_{1} \vec{S}^{2}+2 J_{2} \vec{S}^{2}-D \vec{S}^{2}, \\
E_{\text {Zigzag-AFM }}=E_{0}-J_{1} \vec{S}^{2}+2 J_{2} \vec{S}^{2}-D \vec{S}^{2} .
\end{gathered}
$$

where E_{0} is the energy without magnetic order, and S is set to 1.5 . Hence, we can estimate the magnetic coupling parameters J_{1} and J_{2} by solving these four equations:

$$
\begin{gathered}
J_{1}=\frac{E_{\text {Neel }-A F M}-E_{F M}}{6 \vec{S}^{2}} \\
J_{2}=\frac{2 E_{\text {Zigzag }-A F M}-E_{F M}-E_{\text {Stripy }-A F M}}{8 \vec{S}^{2}}
\end{gathered}
$$

Under thermodynamic equilibrium, the quantity of primary interest in governing the relative stability of defects is their formation energy $\left(E_{\text {form }}\right)$. The formation energy takes the form

$$
E_{\text {form }}=\left(E_{\text {defect }}-E_{\text {host }} \pm N \mu\right)
$$

where $E_{\text {defect }}$ and $E_{\text {host }}$ are the total energy of the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers with and without point defect, respectively. N is the number of the surplus $(-)$ or poor $(+)$ atoms compared with the perfect $\mathrm{Fe}_{2} \mathrm{X}$, and μ is the corresponding chemical potential.

Different magnetic configurations for the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers in $2 \times 2 \times 1$ supercell with the Fe -
I_{X} defect are given by the following expressions:

$$
\begin{gathered}
E_{F M}=E_{0}-9 J_{1} \vec{S}^{2}-18 J_{2} \vec{S}^{2}-D \vec{S}^{2}, \\
E_{\text {Neel }-A F M}=E_{0}+9 J_{1} \vec{S}^{2}-18 J_{2} \vec{S}^{2}-D \vec{S}^{2}, \\
E_{\text {Stripy }-A F M}=E_{0}+3 J_{1} \vec{S}^{2}+6 J_{2} \vec{S}^{2}-D \vec{S}^{2}, \\
E_{\text {Zigzag-AFM }}=E_{0}-3 J_{1} \vec{S}^{2}+6 J_{2} \vec{S}^{2}-D \vec{S}^{2} .
\end{gathered}
$$

Here, the magnetic coupling parameters J_{1} and J_{2} of the Janus $\mathrm{Fe}_{2} \mathrm{X}$ monolayers with point defect by solving these four equations:

$$
\begin{gathered}
J_{1}=\frac{E_{\text {Neel }-A F M}-E_{F M}}{18 \vec{S}^{2}} \\
J_{2}=\frac{2 E_{\text {Zigzag }-A F M}-E_{F M}-E_{\text {Stripy }-A F M}}{24 \vec{S}^{2}}
\end{gathered}
$$

The Curie temperature was calculated by the Monte Carlo method with the Metropolis algorithm based on the 2D anisotropy Heisenberg model. All of them were implemented in MCSOLVER. ${ }^{6}$

Supporting Figures and Tables

Table S1. Structural parameters of the predicted Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers: space group (SG), lattice constants a and b, layer thickness h, bond lengths of $\mathrm{Fe}_{\mathrm{I}}-\mathrm{Fe}_{\mathrm{II}} d_{1}, \mathrm{Fe}_{\mathrm{I}}-\mathrm{Fe}_{\mathrm{I}} /\left(\mathrm{Fe}_{\mathrm{II}}-\mathrm{Fe}_{\mathrm{II}}\right) d_{2}$, $\mathrm{Fe}_{\text {II }}-\mathrm{S} / \mathrm{Se} d_{3}$, and $\mathrm{Fe}_{\mathrm{I}}-\mathrm{S} / \mathrm{Se} d_{4}$.

	SG	a / b (\AA)	h (\AA)	d_{1} (\AA)	d_{2} (\AA)	d_{3} (\AA)	d_{4} (\AA)
$\mathrm{Fe}_{2} \mathrm{~S}$	$P 3 m 1$	2.90	3.36	2.48	2.90	2.27	3.75
$\mathrm{Fe}_{2} \mathrm{Se}$	$P 3 m 1$	2.97	3.52	2.47	2.97	2.45	3.91

The relaxed lattice constants are $a=b=2.90 / 2.97 \AA$ for the Janus $\mathrm{Fe}_{2} \mathrm{~S} / \mathrm{Fe}_{2} \mathrm{Se}$ monolayers. The interlayer distance of Fe atoms is $2.48 \AA$ for $\mathrm{Fe}_{2} \mathrm{~S}$ and $2.47 \AA$ for $\mathrm{Fe}_{2} \mathrm{Se}$, respectively, much smaller than the intralayer ones and comparable to the $\mathrm{Fe}-\mathrm{Fe}$ bond in 2D Fe2Si $(2.43 \AA)^{7}$ and bulk Fe with $\operatorname{Im} 3 m$ symmetry $(2.48 \AA) .{ }^{8}$ Meanwhile, the optimized $\mathrm{Fe}_{\text {II }}-\mathrm{S}$ and $\mathrm{Fe}_{\text {II }}-\mathrm{Se}$ bonds lengths of 2.27 and $2.45 \AA$, respectively, which are slightly larger than the $\mathrm{Fe}-\mathrm{S}$ bond $\left(2.22 \AA\right.$) in $\mathrm{H}-\mathrm{FeS}_{2}$ and the $\mathrm{Fe}-\mathrm{Se}$ bond (2.35 \AA) in $\mathrm{H}-\mathrm{FeSe}_{2} .{ }^{9}$
(a)
(b)

Figure S1. (a) Octahedral-like building block. (b) Phonon dispersive curves of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer.

Figure S2. ELF maps of different faces in the Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers.

Figure S3. Crystal orbital Hamilton population (COHP) curves of the adjacent $\mathrm{Fe}_{\mathrm{I}}-\mathrm{Fe}_{\mathrm{II}}$ and $\mathrm{Fe}_{\mathrm{II}}-\mathrm{S} / \mathrm{Se}$ pairs in the Janus (a) $\mathrm{Fe}_{2} \mathrm{~S}$ and (b) $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers.

Figure S4. Total energies and the snapshots of the final frames for the Janus (a) $\mathrm{Fe}_{2} \mathrm{~S}$ and (b) $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers. Orientation-dependent in-plane Young's modulus $Y(\theta)$ and Poisson's ratio $v(\theta)$ of the Janus (c, d) $\mathrm{Fe}_{2} \mathrm{~S}$ and (e, f) $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers, respectively.

Figure S5. The top and side views of the competing phases and other $\mathrm{Fe}-\mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers, including (a) $1 \mathrm{~T}-\mathrm{Fe}_{2} \mathrm{X}$, (b) $1 \mathrm{H}-\mathrm{Fe}_{2} \mathrm{X}$, (c) Janus $1 \mathrm{H}-\mathrm{Fe}_{2} \mathrm{X}$, (d) FeX , (e) $1 \mathrm{~T}-\mathrm{FeX}_{2}$, (f) $1 \mathrm{H}-\mathrm{FeX}_{2}$. (g) Convex Hull data for Janus $\mathrm{Fe}_{2} \mathrm{~S}$ and (h) $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers with respect to the Fe , X atoms, competing phases and previously predicted stable geometries of FeX and $1 \mathrm{~T} / 1 \mathrm{H}-\mathrm{FeX}_{2}$ monolayers. ${ }^{9,10}$

Table S2. Elastic constants (C_{11}, C_{12}, in N / m), Young's modulus (N / m), and Poisson's ratio of the Janus $\mathrm{Fe}_{2} \mathrm{~S}$ and $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers.

	C_{11} $(\mathrm{~N} / \mathrm{m})$	C_{12} $(\mathrm{~N} / \mathrm{m})$	$Y_{\max }$ $(\mathrm{N} / \mathrm{m})$	$Y_{\min }$ $(\mathrm{N} / \mathrm{m})$	$v_{\text {max }}$	$v_{\text {min }}$
$\mathrm{Fe}_{2} \mathrm{~S}$	36.67	35.38	2.53	2.53	0.97	0.97
$\mathrm{Fe}_{2} \mathrm{Se}$	41.22	27.35	23.06	23.06	0.66	0.66

Table S3. Relative energies (meV/f.u.) of the different magnetic configurations for the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer with respect to the FM ground state.

	FM	Néel-AFM	Stripy-AFM	Zigzag-AFM
$\mathrm{Fe}_{2} \mathrm{Se}$	0	494	304	275

Figure S6. (a) Spin-polarized charge density and (b) differential charge density of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer. The yellow and blue donate different spin states, respectively, and the red and green regions indicate charge accumulation and depletion, respectively.

Table S4. Bader charge of the Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers. The gain and loss of electrons are presented by negative and positive values, respectively. The unit for transfer charge is e.

	Fe_{I}	$\mathrm{Fe}_{\text {II }}$	S / Se
Janus $\mathrm{Fe}_{2} \mathrm{~S}$	0.002	0.412	-0.414
Janus $\mathrm{Fe}_{2} \mathrm{Se}$	0.001	0.311	-0.312

Figure S7. Spin-polarized electronic band structure and projected density of states of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer. Red and blue lines represent the spin-up and spin-down channels, respectively. Fermi level is set to zero.

Figure S8. PDOS with spin-down state onto $4 s$ orbital and five partial $3 d$ orbitals of Fe_{I} and $\mathrm{Fe}_{\mathrm{II}}$ atoms in Janus $\mathrm{Fe}_{2} \mathrm{~S}$ monolayer.

Figure S9. Calculated coupling interaction strength of interlayer Fe atoms as a function of $\mathrm{Fe}_{\mathrm{I}}-\mathrm{Fe}_{\mathrm{II}}$ distance.

Figure S10. (a) Variation of the average magnetic moment $\left(M_{Z}\right)$ of the Fe atom (blue) and the specific heat $\left(C_{V}\right)$ (red) as a function of temperature obtained from Monte Carlo simulations based on the anisotropy Heisenberg model for the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer. (b) Angular-dependent MAE of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer, where the pink and cyan indicate the magnetization in the $x y$ and $x z$ planes, respectively. Orbital-resolved MAE of the Fe atom with respect to the d orbitals for Janus (c) $\mathrm{Fe}_{2} \mathrm{~S}$ and (d) $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers.

(d) 0
(b)

(e)

(c)

(f)

Figure S11. Atomic structures with the point defects in the Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers. The investigated defects belong to two classes, namely vacancy defects (e.g., (a) single Fe_{I} atom vacancy
$\left(\mathrm{V}_{\mathrm{Fe}-\mathrm{I}}\right)$, (b) single $\mathrm{Fe}_{\mathrm{II}}$ atom vacancy $\left(\mathrm{V}_{\mathrm{Fe}-\mathrm{II}}\right)$, and (c) single X atom vacancy $\left(\mathrm{V}_{\mathrm{X}}\right)$) and antisite defects (e.g., (d) a X atom substitutes a Fe_{I} atom $\left(\mathrm{Fe}-\mathrm{I}_{\mathrm{X}}\right)$, (e) a X atom substitutes a $\mathrm{Fe}_{\mathrm{II}}$ atom $\left(\mathrm{Fe}-\mathrm{II}_{\mathrm{X}}\right)$, and (f) a Fe atom substitutes a X atom $\left(\mathrm{X}_{\mathrm{Fe}}\right)$).

Table S5. Formation energy $\left(E_{\text {form }}, \mathrm{eV}\right)$ of the point defects of the Janus $\mathrm{Fe}_{2} \mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{Se})$ monolayers.

	$\mathrm{V}_{\mathrm{Fe}-\mathrm{I}}$	$\mathrm{V}_{\mathrm{Fe}-\mathrm{II}}$	V_{X}	$\mathrm{Fe}-\mathrm{I}_{\mathrm{X}}$	$\mathrm{Fe}-\mathrm{II}_{\mathrm{X}}$	X_{Fe}
$\mathrm{Fe}_{2} \mathrm{~S}$	0.52	$/$	0.37	-1.85	$/$	0.72
$\mathrm{Fe}_{2} \mathrm{Se}$	0.58	1.31	-0.35	-2.04	$/$	0.59

Figure S12. Variation of the average magnetic moment $\left(M_{Z}\right)$ of the Fe atom and the specific heat $\left(C_{V}\right)$ as a function of temperature obtained from Monte Carlo simulations based on the anisotropy Heisenberg model for the (a) Janus $\mathrm{Fe}_{2} \mathrm{~S}$ and (b) $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers with the $\mathrm{Fe}-\mathrm{I}_{\mathrm{X}}$ defect. Angulardependent MAE of the (c) Janus $\mathrm{Fe}_{2} \mathrm{~S}$ and (d) $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers with the $\mathrm{Fe}-\mathrm{I}_{\mathrm{X}}$ defect.

Figure S13. $T_{C} \mathrm{~S}$ and MAEs of the Janus $\mathrm{Fe}_{2} \mathrm{Se}$ monolayer under different external biaxial strains.

Figure S14. Phonon dispersive curves for the TS of Janus $\mathrm{Fe}_{2} \mathrm{~S}$ monolayer in ferroelastic transform process.

Table S6. Structural information of the predicted Janus $\mathrm{Fe}_{2} \mathrm{~S}$ and $\mathrm{Fe}_{2} \mathrm{Se}$ monolayers.

	Space Group	Lattice Parameters $\left(\AA,{ }^{\circ}\right)$	Wyckoff Positions (fractional)			
			Atoms	x	y	z
$\mathrm{Fe}_{2} \mathrm{~S}$	P3m1	$a=2.8993$	Fe (1a)	0.00000	0.00000	0.57236
		$b=2.8993$	Fe (1c)	0.66667	0.33333	0.50515
		$\gamma=120.00$	S (1b)	0.33333	0.66667	0.44916
$\mathrm{Fe}_{2} \mathrm{Se}$	P3m1	$a=2.9721$	Fe (1a)	0.00000	0.00000	0.56664
		$b=2.9721$	Fe (1c)	0.66667	0.33333	0.50509
		$\gamma=120.00$	Se (1b)	0.33333	0.66667	0.44458

References

1 Y. Wang, J. Lv, L. Zhu and Y. Ma, Comput. Phys. Commun., 2012, 183, 2063-2070.
2 Y. Wang, J. Lv, L. Zhu and Y. Ma, Phys. Rev. B, 2010, 82, 94116.
3 G. Kresse and J. Furthmu, Phys. Rev. B., 1996, 54, 11169.
4 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133-A1138.
5 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
6 L. Liu, X. Ren, J. Xie, B. Cheng, W. Liu, T. An, H. Qin and J. Hu, Appl. Surf. Sci., 2019, 480, 300-307.

7 Y. Sun, Z. Zhuo, X. Wu and J. Yang, Nano Lett., 2017, 17, 2771-2777.
8 R. Kohlhaas, P. Dunner and P. N. Schmitz, Z Angew Phys.
9 C. Ataca, H. Şahin and S. Ciraci, J. Phys. Chem. C, 2012, 116, 8983-8999.
10 A. Bafekry, I. Abdolhosseini Sarsari, M. Faraji, M. M. Fadlallah, H. R. Jappor, S. Karbasizadeh, V. Nguyen and M. Ghergherehchi, Appl. Phys. Lett.

