Kilogram-scale high yield production of PbI₂ microcrystals for optimized photodetector

Huiru Sun^a, Longxing Su^{*b}, Qiang Zeng^c, Yuan Pan^a, Zhenshan Guo^d,

Kang An^a, Zhonghui Xia^a, Zibin Huang^a, Fangyang Liu^{*c}, and Hongyu

Chen*a

^a School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, China

^b International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China

^c School of Metallurgy and Environment, Central South University, Changsha 410083, China

^d College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

**Authors to whom correspondence should be addressed:* <u>sulongxing@dgut.edu.cn</u> (L. Su), <u>liufangyang@csu.edu.cn</u> (F. Liu), <u>chenhy@m.scnu.edu.cn</u> (H. Y. Chen)

Fig. S1. The photograph of PbI_2 production at kilogram class.

Fig. S2. The optical images of a) $Au-PbI_2-Au$ and b) $Au-PbI_2$ -Graphene photodetectors.

Fig. S3. a) The energy levels of Au, PbI_2 , and Graphene relative to vacuum level; The schematic energy diagrams of the b) Au-PbI₂-Au and c) Au-PbI₂-Graphene photodetectors under equilibrium condition at 0 V.

Fig. S4. The light-intensity-dependent photocurrents of the a) Au-PbI₂-Au and b) Au-PbI₂-Graphene devices.

Morphology	Bias	On/off	Rise/decay	Responsitivity	Detectivity	Ref.
	(V)	ratio	time	(A/W)	(Jones)	
Microcrystal	10	13435	31 ms/31 ms	0.314	3.23 × 10 ¹¹	This work
Nanosheet	5	900	13.5 ms/20 ms	0.72	$1.04 imes 10^{10}$	S1
Nanosheet	10	-	-	0.0013	-	S2
Single crystal	10	14700	323 μs/ 520 μs	0.18	3.23 × 10 ¹¹	S3
Nanosheet	5	42	86 /150 ms	0.41	3.1 × 10 ¹¹	S4
Single crystal	15	519	354 ms/-	11.3	-	S5
Nanosheet	1.9	-	55 μs/110 μs	0.0001	-	S6
Nanosheet	5	1371	161.7 ms/192.1ms	0.04	3.31×10^{10}	S7
Nanoflakes	5	-	14.1 ms/31ms	0.51	4.0×10^{10}	S 8
Nanobelt	5	1000	425 ms/41 ms	0.013	-	S9

Table S1. The performance parameters of PbI_2 based photodetectors.

References

S1. Y. Wang, L. Gan, J. Chen, R. Yang, and T. Zhai, Sci. Bull. 2017, 62, 1654.

S2. R. Frisenda, J. O. Island, J. L. Lado, E. Giovanelli, P. Gant, P. Nagler, S. Bange, J.

M. Lupton, C. Schuller, A. J. Molina-Mendoza, L. Aballe, M. Foerster, T. Korn, M. Angel Nino, D. P. de Lara, E. M. Perez, J. Fernandez Rossier, and A. Castellanos-Gomez, *Nanotechnology* **2017**, *28*, 455703.

- S3. Q. Wei, B. Shen, Y. Chen, B. Xu, Y. Xia, J. Yin, and Z. Liu, *Mater. Lett.* 2017, 193, 101.
- S4. C. Lan, R. Dong, Z. Zhou, L. Shu, D. Li, S. Yip, and J. C. Ho, *Adv. Mater.* 2017, 29, 1702759.
- S5. J. Zhang, T. Song, Z. Zhang, K. Ding, F. Huang, and B. Sun, *J. Mater. Chem. C* **2015**, *3*, 4402.
- S6. W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, *Adv. Electron. Mater.*2016, 2, 1600291.
- S7. R. Wang, S. Li, P. Wang, J. Xiu, G. Wei, M. Sun, Z. Li, Y. Liu, and M. Zhong, J. Phys. Chem. C 2019, 123, 9609.
- S8. H. Xiao, T. Liang, and M. Xu, Small 2019, 15, 1901767.
- S9. M. Han, J. Sun, L. Bian, Z. Wang, L. Zhang, Y. Yin, Z. Gao, F. Li, Q. Xin, L. He, N. Han, A. Song, and Z. X. Yang, *J. Mater. Chem. C* 2018, *6*, 5746.