ELECTRONIC SUPPLEMENTARY INFORMATION

Chemometric Approach for the Design of Lanthanum-based

High Entropy Perovskite Oxides

Luca Angelo Betti,^a Lisa Rita Magnaghi,^{a,*} Aldo Bosetti,^b Raffaella Biesuz^a, Lorenzo Malavasi^{a,*}

^aDepartment of Chemistry, University of Pavia and INSTM, Viale Taramelli 16, Pavia, Italy. ^bEni S.p.A., Eni Research Centre, Via Fause 4, Novara, Italy.

Stability domain estimation

Table S1. Complete list of candidate points (1001) to be submitted to D-Optimal Design for La(Cr,Mn,Fe,Co,M)O₃ systems, whereas M stands for Ni or Zn, and samples included in the reduced candidate point lists for Ni \leq 0.9 (seventh column, 1000 samples), Ni \leq 0.8 (eighth column, 996 samples) and Zn \leq 0.5 (last column, 931 samples).

n	Comp	ete cand	idate po	int mati	rix (cp)	Samples included in reduced cps			
	Cr	Mn	Fe	Со	Μ	Ni≤0.9	Ni≤0.8	Zn≤0.5	
1	1	0	0	0	0	✓	✓	√	
2	0.9	0.1	0	0	0	✓	✓	✓	
3	0.9	0	0.1	0	0	✓	✓	✓	
4	0.9	0	0	0.1	0	✓	✓	✓	
5	0.8	0.2	0	0	0	✓	✓	✓	
6	0.8	0.1	0.1	0	0	✓	✓	√	
7	0.8	0.1	0	0.1	0	✓	✓	✓	
8	0.8	0	0.2	0	0	✓	✓	√	
9	0.8	0	0.1	0.1	0	✓	✓	✓	
10	0.8	0	0	0.2	0	✓	✓	✓	
11	0.7	0.3	0	0	0	✓	✓	✓	
12	0.7	0.2	0.1	0	0	✓	✓	✓	
13	0.7	0.2	0	0.1	0	✓	✓	✓	
14	0.7	0.1	0.2	0	0	✓	✓	✓	
15	0.7	0.1	0.1	0.1	0	✓	✓	✓	
16	0.7	0.1	0	0.2	0	✓	✓	✓	
17	0.7	0	0.3	0	0	✓	✓	✓	
18	0.7	0	0.2	0.1	0	✓	✓	✓	
19	0.7	0	0.1	0.2	0	✓	✓	✓	
20	0.7	0	0	0.3	0	✓	✓	✓	
21	0.6	0.4	0	0	0	✓	✓	✓	
22	0.6	0.3	0.1	0	0	✓	✓	✓	
23	0.6	0.3	0	0.1	0	✓	✓	✓	
24	0.6	0.2	0.2	0	0	✓	✓	✓	
25	0.6	0.2	0.1	0.1	0	✓	✓	✓	
26	0.6	0.2	0	0.2	0	✓	✓	✓	
27	0.6	0.1	0.3	0	0	✓	✓	√	
28	0.6	0.1	0.2	0.1	0	✓	✓	√	
29	0.6	0.1	0.1	0.2	0	✓	✓	√	
30	0.6	0.1	0	0.3	0	✓	✓	√	
31	0.6	0	0.4	0	0	✓	✓	✓	
32	0.6	0	0.3	0.1	0	✓	✓	✓	
33	0.6	0	0.2	0.2	0	✓	✓	✓	
34	0.6	0	0.1	0.3	0	✓	✓	✓	
35	0.6	0	0	0.4	0	✓	✓	✓	
36	0.5	0.5	0	0	0	✓	✓	✓	
37	0.5	0.4	0.1	0	0	✓	✓	✓	

38	0.5	0.4	0	0.1	0	✓	✓	✓
39	0.5	0.3	0.2	0	0	✓	✓	✓
40	0.5	0.3	0.1	0.1	0	✓	✓	✓
41	0.5	0.3	0	0.2	0	√	✓	✓
42	0.5	0.2	0.3	0	0	√	✓	✓
43	0.5	0.2	0.2	0.1	0	√	✓	✓
44	0.5	0.2	0.1	0.2	0	√	✓	✓
45	0.5	0.2	0	0.3	0	✓	✓	✓
46	0.5	0.1	0.4	0	0	✓	✓	✓
47	0.5	0.1	0.3	0.1	0	✓	✓	✓
48	0.5	0.1	0.2	0.2	0	✓	✓	✓
49	0.5	0.1	0.1	0.3	0	✓	✓	✓
50	0.5	0.1	0	0.4	0	✓	✓	✓
51	0.5	0	0.5	0	0	✓	✓	✓
52	0.5	0	0.4	0.1	0	✓	✓	✓
53	0.5	0	0.3	0.2	0	✓	✓	✓
54	0.5	0	0.2	0.3	0	✓	✓	✓
55	0.5	0	0.1	0.4	0	✓	✓	✓
56	0.5	0	0	0.5	0	✓	✓	✓
57	0.4	0.6	0	0	0	✓	✓	✓
58	0.4	0.5	0.1	0	0	✓	✓	✓
59	0.4	0.5	0	0.1	0	✓	✓	✓
60	0.4	0.4	0.2	0	0	✓	✓	✓
61	0.4	0.4	0.1	0.1	0	✓	✓	✓
62	0.4	0.4	0	0.2	0	✓	✓	✓
63	0.4	0.3	0.3	0	0	✓	✓	✓
64	0.4	0.3	0.2	0.1	0	✓	✓	✓
65	0.4	0.3	0.1	0.2	0	✓	✓	✓
66	0.4	0.3	0	0.3	0	✓	✓	✓
67	0.4	0.2	0.4	0	0	✓	✓	~
68	0.4	0.2	0.2	0.2	0	✓	✓	✓
69	0.4	0.2	0.3	0.1	0	✓	✓	✓
70	0.4	0.1	0.3	0.2	0	✓	✓	✓
71	0.4	0.2	0.1	0.3	0	✓	✓	✓
72	0.4	0.1	0.2	0.3	0	✓	✓	✓
73	0.4	0.2	0	0.4	0	✓	✓	✓
74	0.4	0.1	0.5	0	0	✓	✓	✓
75	0.4	0.1	0.4	0.1	0	✓	✓	✓
76	0.4	0.1	0.1	0.4	0	✓	✓	✓
77	0.4	0.1	0	0.5	0	\checkmark	✓	✓
78	0.4	0	0.6	0	0	✓	✓	✓
79	0.4	0	0.5	0.1	0	✓	✓	✓
80	0.4	0	0.4	0.2	0	\checkmark	✓	✓
81	0.4	0	0.3	0.3	0	✓	✓	✓
82	0.4	0	0.2	0.4	0	✓	✓	✓
83	0.4	0	0.1	0.5	0	\checkmark	\checkmark	~
84	0.4	0	0	0.6	0	\checkmark	\checkmark	✓

85 0.3 0.7 0 0 0 \checkmark \checkmark \checkmark 86 0.3 0.6 0 1 0 \checkmark \checkmark \checkmark 87 0.3 0.5 0.2 0 0 \checkmark \checkmark \checkmark 89 0.3 0.5 0 1.01 0 \checkmark \checkmark \checkmark 90 0.3 0.5 0 0.2 0 \checkmark \checkmark \checkmark 91 0.3 0.4 0.2 0.1 0 \checkmark \checkmark \checkmark 92 0.3 0.4 0.2 0 \checkmark \checkmark \checkmark 93 0.3 0.4 0 0 \checkmark \checkmark \checkmark 94 0.3 0.3 0.1 0 \checkmark \checkmark \checkmark 96 0.3 0.3 0.2 0.2 0.3 0 \checkmark \checkmark 100 0.3 0.2									
86 0.3 0.6 0.1 0 \checkmark \checkmark \checkmark 87 0.3 0.6 0 0.1 0 \checkmark \checkmark \checkmark 88 0.3 0.5 0.1 0.1 0 \checkmark \checkmark \checkmark 90 0.3 0.5 0 0.2 0 \checkmark \checkmark \checkmark 91 0.3 0.4 0.2 0 \checkmark \checkmark \checkmark 92 0.3 0.4 0.2 0 \checkmark \checkmark \checkmark 93 0.3 0.4 0 0.3 0 \checkmark \checkmark \checkmark 94 0.3 0.4 0 0.3 0 \checkmark \checkmark \checkmark 95 0.3 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 96 0.3 0.2 0.5 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0	85	0.3	0.7	0	0	0	✓	✓	✓
87 0.3 0.6 0 0.1 0 \checkmark \checkmark 88 0.3 0.5 0.2 0 0 \checkmark \checkmark 89 0.3 0.5 0.1 0.1 0 \checkmark \checkmark 90 0.3 0.5 0 0.2 0 \checkmark \checkmark 91 0.3 0.4 0.2 0.1 0 \checkmark \checkmark 92 0.3 0.4 0.1 0.2 0 \checkmark \checkmark 93 0.3 0.4 0 0.3 0 \checkmark \checkmark 94 0.3 0.3 0.3 0.1 0 \checkmark \checkmark 95 0.3 0.3 0.2 0.2 0 \checkmark \checkmark 97 0.3 0.3 0.1 0.3 0 \checkmark \checkmark 98 0.3 0.2 0.3 0 \checkmark \checkmark 100 0.3 <td>86</td> <td>0.3</td> <td>0.6</td> <td>0.1</td> <td>0</td> <td>0</td> <td>✓</td> <td>✓</td> <td>✓</td>	86	0.3	0.6	0.1	0	0	✓	✓	✓
88 0.3 0.5 0.2 0 0 \checkmark \checkmark \checkmark 90 0.3 0.5 0.1 0.1 0 \checkmark \checkmark \checkmark 90 0.3 0.5 0 0.2 0 \checkmark \checkmark \checkmark 91 0.3 0.4 0.2 0.1 0 \checkmark \checkmark \checkmark 92 0.3 0.4 0.2 0.1 0 \checkmark \checkmark \checkmark 93 0.3 0.4 0 0.3 0 \checkmark \checkmark \checkmark 94 0.3 0.3 0.3 0.1 0 \checkmark \checkmark \checkmark 95 0.3 0.3 0.2 0.2 0 \checkmark \checkmark \checkmark 96 0.3 0.3 0.4 0 \checkmark \checkmark \checkmark 90 0.3 0.2 0.5 0 \checkmark \checkmark \checkmark 101 <td< td=""><td>87</td><td>0.3</td><td>0.6</td><td>0</td><td>0.1</td><td>0</td><td>√</td><td>✓</td><td>√</td></td<>	87	0.3	0.6	0	0.1	0	√	✓	√
89 0.3 0.5 0.1 0.1 0 \checkmark \checkmark \checkmark 90 0.3 0.5 0 0.2 0 \checkmark \checkmark \checkmark 91 0.3 0.4 0.3 0 0 \checkmark \checkmark \checkmark 92 0.3 0.4 0.2 0.1 0 \checkmark \checkmark \checkmark 93 0.3 0.4 0 0.3 0 \checkmark \checkmark \checkmark 94 0.3 0.4 0 0.3 0 \checkmark \checkmark \checkmark 95 0.3 0.3 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 96 0.3 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 97 0.3 0.2 0.5 0 0 \checkmark \checkmark 101 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 10	88	0.3	0.5	0.2	0	0	√	✓	√
90 0.3 0.5 0 0.2 0 \checkmark \checkmark \checkmark 91 0.3 0.4 0.2 0.1 0 \checkmark \checkmark \checkmark 92 0.3 0.4 0.2 0.1 0 \checkmark \checkmark 93 0.3 0.4 0.1 0.2 0 \checkmark \checkmark 94 0.3 0.4 0 0.3 0 \checkmark \checkmark 94 0.3 0.3 0.4 0 0 \checkmark \checkmark 95 0.3 0.3 0.3 0.1 0 \checkmark \checkmark 97 0.3 0.3 0.1 0.3 0 \checkmark \checkmark 98 0.3 0.3 0.1 0.4 0 \checkmark \checkmark \checkmark 100 0.3 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.3 0.2 <t< td=""><td>89</td><td>0.3</td><td>0.5</td><td>0.1</td><td>0.1</td><td>0</td><td>√</td><td>✓</td><td>✓</td></t<>	89	0.3	0.5	0.1	0.1	0	√	✓	✓
91 0.3 0.4 0.2 0.1 0 \checkmark \checkmark \checkmark 92 0.3 0.4 0.2 0.1 0 \checkmark \checkmark 93 0.3 0.4 0 0.3 0.4 0 0.5 \checkmark 94 0.3 0.4 0 0.5 \checkmark \checkmark 95 0.3 0.3 0.4 0 0 \checkmark \checkmark 96 0.3 0.3 0.2 0.2 0 \checkmark \checkmark 97 0.3 0.3 0.2 0.2 0 \checkmark \checkmark 98 0.3 0.3 0.2 0.5 0 \checkmark \checkmark 100 0.3 0.2 0.4 0.1 0 \checkmark \checkmark 101 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 102 0.3 0.2	90	0.3	0.5	0	0.2	0	√	✓	✓
92 0.3 0.4 0.2 0.1 0 \checkmark \checkmark 93 0.3 0.4 0.3 0 \checkmark \checkmark \checkmark 94 0.3 0.4 0 0.3 0.4 0 0 \checkmark \checkmark 95 0.3 0.3 0.4 0 0 \checkmark \checkmark 96 0.3 0.3 0.2 0.2 0 \checkmark \checkmark 97 0.3 0.3 0.1 0.3 0.2 0.2 0 \checkmark \checkmark 98 0.3 0.2 0.5 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.3 0.2 0.4 0 \checkmark \checkmark 102 0.3 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 104 0.3 0.1 0.5 0.1 \checkmark \checkmark	91	0.3	0.4	0.3	0	0	✓	✓	✓
93 0.3 0.4 0.1 0.2 0 \checkmark \checkmark \checkmark 94 0.3 0.4 0 0.3 0.7 \checkmark \checkmark 95 0.3 0.3 0.3 0.1 0 \checkmark \checkmark 96 0.3 0.3 0.1 0.7 \checkmark \checkmark 97 0.3 0.3 0.1 0.3 0 \checkmark \checkmark 98 0.3 0.3 0.1 0.3 0 \checkmark \checkmark 99 0.3 0.2 0.4 0.1 0 \checkmark \checkmark 100 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 101 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 102 0.3 0.2 0.3 0.7 \checkmark \checkmark 103 0.3 0.1 0.4 0	92	0.3	0.4	0.2	0.1	0	√	✓	✓
94 0.3 0.4 0 0.3 0 \checkmark \checkmark \checkmark 95 0.3 0.3 0.3 0.1 0 \checkmark \checkmark \checkmark 96 0.3 0.3 0.2 0.2 0 \checkmark \checkmark \checkmark 97 0.3 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 98 0.3 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 100 0.3 0.2 0.5 0 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark \checkmark 102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 103 0.3 0.2 0 0 \checkmark \checkmark \checkmark 106 0.3 0.1 0.5 0.1 \circ \checkmark \checkmark 108	93	0.3	0.4	0.1	0.2	0	√	✓	✓
95 0.3 0.3 0.4 0 0 \checkmark \checkmark \checkmark 96 0.3 0.3 0.1 0 \checkmark \checkmark \checkmark 97 0.3 0.3 0.1 0.3 0 \checkmark \checkmark 98 0.3 0.3 0 0.4 0 \checkmark \checkmark 99 0.3 0.2 0.4 0.1 0 \checkmark \checkmark 100 0.3 0.2 0.4 0.1 0 \checkmark \checkmark 101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark 102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 103 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 104 0.3 0.1 0.5 0.1 0 \checkmark \checkmark 105 0.3 0.1	94	0.3	0.4	0	0.3	0	√	✓	✓
96 0.3 0.3 0.1 0 \checkmark \checkmark \checkmark 97 0.3 0.3 0.2 0.2 0 \checkmark \checkmark \checkmark 98 0.3 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 99 0.3 0.2 0.5 0 0 \checkmark \checkmark \checkmark 100 0.3 0.2 0.5 0 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark 102 0.3 0.2 0.3 0 \checkmark \checkmark \checkmark 103 0.3 0.2 0.1 0.4 0 \checkmark \checkmark \checkmark 104 0.3 0.1 0.5 0 \checkmark \checkmark \checkmark 105 0.3 0.1 0.4 0.2 0 \checkmark \checkmark 108 0.3 0.1 0.3	95	0.3	0.3	0.4	0	0	✓	✓	✓
97 0.3 0.2 0.2 0 \checkmark \checkmark \checkmark 98 0.3 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 99 0.3 0.3 0 0.4 0 \checkmark \checkmark \checkmark 100 0.3 0.2 0.5 0 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark \checkmark 102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 103 0.3 0.2 0.1 0.4 0 \checkmark \checkmark 104 0.3 0.2 0 0.5 0 \checkmark \checkmark 106 0.3 0.1 0.5 0.1 0 \checkmark \checkmark 108 0.3 0.1 0.2 0.4 0 \checkmark \checkmark 111 0.3 0.1 0.66	96	0.3	0.3	0.3	0.1	0	√	✓	✓
98 0.3 0.1 0.3 0 \checkmark \checkmark \checkmark 99 0.3 0.3 0 0.4 0 \checkmark \checkmark \checkmark 100 0.3 0.2 0.5 0 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark \checkmark 102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 103 0.3 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 104 0.3 0.2 0 0.5 0 \checkmark \checkmark \checkmark 105 0.3 0.1 0.4 0.2 0 \checkmark \checkmark \checkmark 108 0.3 0.1 0.5 0.1 0 \checkmark \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark \checkmark	97	0.3	0.3	0.2	0.2	0	✓	✓	✓
99 0.3 0.3 0 0.4 0 \checkmark \checkmark \checkmark 100 0.3 0.2 0.5 0 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark 102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 103 0.3 0.2 0.2 0.3 0 \checkmark \checkmark 104 0.3 0.2 0.1 0.4 0 \checkmark \checkmark 105 0.3 0.2 0 0.5 0 \checkmark \checkmark 106 0.3 0.1 0.5 0.1 0 \checkmark \checkmark 107 0.3 0.1 0.4 0.2 0 \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark 111 0.3 0.1 0.5 0 \checkmark \checkmark	98	0.3	0.3	0.1	0.3	0	✓	✓	✓
100 0.3 0.2 0.5 0 0 \checkmark \checkmark \checkmark 101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark \checkmark 102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark 103 0.3 0.2 0.2 0.3 0 \checkmark \checkmark 104 0.3 0.2 0.1 0.4 0 \checkmark \checkmark 105 0.3 0.2 0 0.5 0 \checkmark \checkmark 106 0.3 0.1 0.6 0 0 \checkmark \checkmark 108 0.3 0.1 0.4 0.2 0 \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark 111 0.3 0.1 0.5 0 \checkmark \checkmark 112 0.3 0.1 0.6 0 \checkmark \checkmark	99	0.3	0.3	0	0.4	0	✓	✓	✓
101 0.3 0.2 0.4 0.1 0 \checkmark \checkmark \checkmark 102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 103 0.3 0.2 0.2 0.3 0 \checkmark \checkmark 104 0.3 0.2 0.1 0.4 0 \checkmark \checkmark 105 0.3 0.2 0 0.5 0 \checkmark \checkmark 106 0.3 0.1 0.6 0 0 \checkmark \checkmark 107 0.3 0.1 0.5 0.1 0 \checkmark \checkmark 108 0.3 0.1 0.3 0.3 0 \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark 111 0.3 0.1 0.1 0.5 0 \checkmark \checkmark 112 0.3 0.1 0 0.6 0 \checkmark	100	0.3	0.2	0.5	0	0	✓	✓	✓
102 0.3 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 103 0.3 0.2 0.2 0.3 0 \checkmark \checkmark \checkmark 104 0.3 0.2 0.1 0.4 0 \checkmark \checkmark 105 0.3 0.2 0 0.5 0 \checkmark \checkmark 106 0.3 0.1 0.6 0 0 \checkmark \checkmark 106 0.3 0.1 0.5 0.1 0 \checkmark \checkmark 107 0.3 0.1 0.4 0.2 0 \checkmark \checkmark 108 0.3 0.1 0.3 0.3 0 \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark 111 0.3 0.1 0.1 0.5 0 \checkmark \checkmark 113 0.3 0 0.5 0.2 0 \checkmark	101	0.3	0.2	0.4	0.1	0	✓	✓	✓
103 0.2 0.2 0.3 0 \checkmark \checkmark \checkmark 104 0.3 0.2 0.1 0.4 0 \checkmark \checkmark \checkmark 105 0.3 0.2 0 0.5 0 \checkmark \checkmark \checkmark 106 0.3 0.1 0.6 0 0 \checkmark \checkmark \checkmark 107 0.3 0.1 0.5 0.1 0 \checkmark \checkmark \checkmark 108 0.3 0.1 0.4 0.2 0 \checkmark \checkmark \checkmark 109 0.3 0.1 0.4 0.2 0 \checkmark \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark \checkmark 111 0.3 0.1 0.6 0 \checkmark \checkmark \checkmark 112 0.3 0.1 0.6 0 \checkmark \checkmark \checkmark 113 0.3	102	0.3	0.2	0.3	0.2	0	✓	✓	✓
104 0.3 0.2 0.1 0.4 0 \checkmark \checkmark \checkmark 105 0.3 0.2 0 0.5 0 \checkmark \checkmark \checkmark 106 0.3 0.1 0.6 0 0 \checkmark \checkmark \checkmark 107 0.3 0.1 0.5 0.1 0 \checkmark \checkmark \checkmark 108 0.3 0.1 0.4 0.2 0 \checkmark \checkmark \checkmark 109 0.3 0.1 0.4 0.2 0 \checkmark \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark \checkmark 111 0.3 0.1 0 0.6 0 \checkmark \checkmark \checkmark 113 0.3 0 0.6 0.1 0 \checkmark \checkmark 114 0.3 0 0.5 0.2 0 \checkmark \checkmark 116	103	0.3	0.2	0.2	0.3	0	✓	✓	✓
105 0.3 0.2 0 0.5 0 \checkmark \checkmark \checkmark 106 0.3 0.1 0.6 0 0 \checkmark \checkmark 107 0.3 0.1 0.5 0.1 0 \checkmark \checkmark 108 0.3 0.1 0.4 0.2 0 \checkmark \checkmark 109 0.3 0.1 0.4 0.2 0 \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark 111 0.3 0.1 0.1 0.5 0 \checkmark \checkmark 112 0.3 0.1 0 0.6 0 \checkmark \checkmark 113 0.3 0 0.5 0.2 0 \checkmark \checkmark 114 0.3 0 0.5 0.2 0 \checkmark \checkmark 115 0.3 0 0.2 0.5 0 \checkmark \checkmark	104	0.3	0.2	0.1	0.4	0	✓	✓	✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	0.3	0.2	0	0.5	0	✓	✓	✓
107 0.3 0.1 0.5 0.1 0 \checkmark \checkmark \checkmark 108 0.3 0.1 0.4 0.2 0 \checkmark \checkmark \checkmark 109 0.3 0.1 0.3 0.3 0 \checkmark \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark \checkmark 111 0.3 0.1 0.1 0.5 0 \checkmark \checkmark \checkmark 112 0.3 0.1 0 0.6 0 \checkmark \checkmark \checkmark 113 0.3 0 0.7 0 0 \checkmark \checkmark \checkmark 114 0.3 0 0.6 0.1 0 \checkmark \checkmark \checkmark 114 0.3 0 0.6 0.1 0 \checkmark \checkmark \checkmark 115 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 116 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 117 0.3 0 0.2 0.5 0 \checkmark \checkmark \checkmark 118 0.3 0 0 0 \checkmark \checkmark \checkmark \checkmark 120 0.3 0 0 0 \checkmark \checkmark \checkmark \checkmark 121 0.2 0.6 0.2 0 0 \checkmark \checkmark \checkmark 122 0.2 0.7 0 0.1 0 \checkmark \checkmark \checkmark 123 0.2	106	0.3	0.1	0.6	0	0	✓	✓	✓
1080.30.10.40.20 \checkmark \checkmark \checkmark 1090.30.10.30.30 \checkmark \checkmark \checkmark \checkmark 1100.30.10.20.40 \checkmark \checkmark \checkmark 1110.30.10.10.50 \checkmark \checkmark \checkmark 1120.30.100.60 \checkmark \checkmark \checkmark 1130.300.700 \checkmark \checkmark \checkmark 1140.300.60.10 \checkmark \checkmark \checkmark 1150.300.50.20 \checkmark \checkmark \checkmark 1160.300.40.30 \checkmark \checkmark \checkmark 1170.300.20.50 \checkmark \checkmark \checkmark 1180.3000 \checkmark \checkmark \checkmark 1200.3000 \checkmark \checkmark \checkmark 1210.20.800 \checkmark \checkmark \checkmark 1220.20.70.10 \checkmark \checkmark \checkmark 1230.20.700 \checkmark \checkmark \checkmark 1240.20.60.10.10 \checkmark \checkmark 1250.20.60.20 \checkmark \checkmark \checkmark 1260.20.50.30 \checkmark \checkmark \checkmark 1280.20.50.10.2 \checkmark <	107	0.3	0.1	0.5	0.1	0	✓	✓	✓
109 0.3 0.1 0.3 0.3 0 \checkmark \checkmark \checkmark 110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark \checkmark 111 0.3 0.1 0.1 0.5 0 \checkmark \checkmark \checkmark 112 0.3 0.1 0 0.6 0 \checkmark \checkmark \checkmark 112 0.3 0.1 0 0.6 0 \checkmark \checkmark \checkmark 113 0.3 0 0.7 0 0 \checkmark \checkmark \checkmark 114 0.3 0 0.6 0.1 0 \checkmark \checkmark \checkmark 115 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 116 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 117 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 118 0.3 0 0.2 0.5 0 \checkmark \checkmark \checkmark 120 0.3 0 0 0 \checkmark \checkmark \checkmark 121 0.2 0.8 0 0 \checkmark \checkmark \checkmark 123 0.2 0.7 0 0 \checkmark \checkmark \checkmark 124 0.2 0.6 0.2 0 \checkmark \checkmark \checkmark 125 0.2 0.5 0.3 0 \checkmark \checkmark \checkmark 128 0.2 0.5 0.1 0.2 0 \checkmark \checkmark \checkmark	108	0.3	0.1	0.4	0.2	0	✓	✓	✓
110 0.3 0.1 0.2 0.4 0 \checkmark \checkmark \checkmark 111 0.3 0.1 0.1 0.5 0 \checkmark \checkmark \checkmark 112 0.3 0.1 0 0.6 0 \checkmark \checkmark \checkmark 113 0.3 0 0.7 0 0 \checkmark \checkmark \checkmark 114 0.3 0 0.6 0.1 0 \checkmark \checkmark \checkmark 115 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 116 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 117 0.3 0 0.2 0.5 0 \checkmark \checkmark \checkmark 118 0.3 0 0.2 0.5 0 \checkmark \checkmark \checkmark 120 0.3 0 0.1 0.6 0 \checkmark \checkmark \checkmark 121 0.2 0.6 0.2 0 \checkmark \checkmark \checkmark	109	0.3	0.1	0.3	0.3	0	✓	 ✓ 	✓
111 0.3 0.1 0.1 0.5 0 \checkmark \checkmark \checkmark 112 0.3 0.1 0 0.6 0 \checkmark \checkmark \checkmark 113 0.3 0 0.7 0 0 \checkmark \checkmark \checkmark 114 0.3 0 0.6 0.1 0 \checkmark \checkmark \checkmark 114 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 115 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 116 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 117 0.3 0 0.2 0.5 0 \checkmark \checkmark \checkmark 118 0.3 0 0.1 0.6 0 \checkmark \checkmark \checkmark 120 0.3 0 0 0 \checkmark \checkmark \checkmark \checkmark 121 0.2 0.8 0 0 \checkmark \checkmark \checkmark \checkmark	110	0.3	0.1	0.2	0.4	0	✓	✓	✓
112 0.3 0.1 0 0.6 0 \checkmark \checkmark \checkmark 113 0.3 0 0.7 0 0 \checkmark \checkmark \checkmark 114 0.3 0 0.6 0.1 0 \checkmark \checkmark \checkmark 114 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 115 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 116 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 117 0.3 0 0.3 0.4 0 \checkmark \checkmark \checkmark 118 0.3 0 0.2 0.5 0 \checkmark \checkmark \checkmark 120 0.3 0 0.1 0.6 0 \checkmark \checkmark \checkmark 121 0.2 0.8 0 0 \checkmark \checkmark \checkmark 123 0.2 0.7 0 0.1 0 \checkmark \checkmark 124	111	0.3	0.1	0.1	0.5	0	✓	✓	✓
113 0.3 0 0.7 0 0 \checkmark \checkmark \checkmark 114 0.3 0 0.6 0.1 0 \checkmark \checkmark \checkmark 115 0.3 0 0.5 0.2 0 \checkmark \checkmark \checkmark 116 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 117 0.3 0 0.4 0.3 0 \checkmark \checkmark \checkmark 118 0.3 0 0.2 0.5 0 \checkmark \checkmark \checkmark 119 0.3 0 0.1 0.6 0 \checkmark \checkmark \checkmark 120 0.3 0 0.1 0.6 0 \checkmark \checkmark \checkmark 121 0.2 0.8 0 0 \checkmark \checkmark \checkmark 123 0.2 0.7 0.1 0 \checkmark \checkmark \checkmark 124 0.2 0.6 0.1 0.1 0 \checkmark \checkmark 126 0.	112	0.3	0.1	0	0.6	0	✓	✓	✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	0.3	0	0.7	0	0	✓	✓	✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	114	0.3	0	0.6	0.1	0	✓	✓	✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	0.3	0	0.5	0.2	0	✓	✓	✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	116	0.3	0	0.4	0.3	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	117	0.3	0	0.3	0.4	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118	0.3	0	0.2	0.5	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	119	0.3	0	0.1	0.6	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120	0.3	0	0	0.7	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	121	0.2	0.8	0	0	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122	0.2	0.7	0.1	0	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	123	0.2	0.7	0	0.1	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	124	0.2	0.6	0.2	0	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	125	0.2	0.6	0.1	0.1	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	126	0.2	0.6	0	0.2	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	127	0.2	0.5	0.3	0	0	✓	✓	✓
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	128	0.2	0.5	0.2	0.1	0	\checkmark	✓	✓
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	129	0.2	0.5	0.1	0.2	0	\checkmark	✓	✓
131 0.2 0.4 0.4 0 0 v v	130	0.2	0.5	0	0.3	0	✓	✓	✓
	131	0.2	0.4	0.4	0	0	✓	✓	✓

132 0.2 0.4 0.3 0.1 0 \checkmark \checkmark \checkmark 133 0.2 0.4 0.1 0.3 0 \checkmark \checkmark 134 0.2 0.4 0 0.4 0 \checkmark \checkmark 135 0.2 0.3 0.5 0 0 \checkmark \checkmark 136 0.2 0.3 0.5 0 0 \checkmark \checkmark 138 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 141 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 143 0.2 0.2 0.5 0.1 0 \checkmark \checkmark 144 0.2 0.2 0.1 0.5 0 \checkmark \checkmark 144 0.2 0.2 0.1 0.5 0 \checkmark \checkmark									
133 0.2 0.4 0.2 0.2 0 \checkmark \checkmark \checkmark 134 0.2 0.4 0 0.4 0 \checkmark \checkmark \checkmark 135 0.2 0.3 0.5 0 \checkmark \checkmark \checkmark 137 0.2 0.3 0.4 0.1 0 \checkmark \checkmark \checkmark 138 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark \checkmark 141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.5 0.1 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.4 0.2 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.1 0.5 0 \checkmark \checkmark 144 0.2	132	0.2	0.4	0.3	0.1	0	✓	✓	✓
134 0.2 0.4 0.1 0.3 0 \checkmark \checkmark \checkmark 135 0.2 0.3 0.5 0 0 \checkmark \checkmark 136 0.2 0.3 0.5 0 0 \checkmark \checkmark 137 0.2 0.3 0.4 0.1 0 \checkmark \checkmark 138 0.2 0.3 0.2 0.3 0 \checkmark \checkmark \checkmark 140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark \checkmark 141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.6 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.3 0.3 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.1 0.6 0 \checkmark \checkmark \checkmark 144 0.2 0.1	133	0.2	0.4	0.2	0.2	0	√	✓	✓
135 0.2 0.4 0 \checkmark \checkmark \checkmark 136 0.2 0.3 0.5 0 0 \checkmark \checkmark \checkmark 137 0.2 0.3 0.4 0.1 0 \checkmark \checkmark 138 0.2 0.3 0.2 0.3 0 \checkmark \checkmark 139 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 141 0.2 0.3 0.5 0.1 0 \checkmark \checkmark 143 0.2 0.2 0.5 0.1 0 \checkmark \checkmark 144 0.2 0.2 0.3 0.3 0 \checkmark \checkmark 144 0.2 0.2 0.1 0.5 0 \checkmark \checkmark 148 0.2 0.1 0.5 0.2 0 \checkmark \checkmark	134	0.2	0.4	0.1	0.3	0	✓	✓	✓
136 0.2 0.3 0.5 0 0 \checkmark \checkmark \checkmark 137 0.2 0.3 0.4 0.1 0 \checkmark \checkmark \checkmark 138 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 139 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark 141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 142 0.2 0.2 0.6 0 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.4 0.2 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.1 0.7 0 \checkmark \checkmark \checkmark 150 0.2 0.1	135	0.2	0.4	0	0.4	0	✓	✓	✓
137 0.2 0.3 0.4 0.1 0 \checkmark \checkmark \checkmark 138 0.2 0.3 0.2 0.3 0 \checkmark \checkmark \checkmark 139 0.2 0.3 0.1 0.4 0 \checkmark \checkmark \checkmark 140 0.2 0.3 0 1.0 \checkmark \checkmark \checkmark 141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 142 0.2 0.2 0.6 0 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.4 0.2 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 144 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 144 0.2 0.1 0.5 0.2 0 \checkmark \checkmark 150 0.2	136	0.2	0.3	0.5	0	0	✓	✓	✓
138 0.2 0.3 0.2 0 \checkmark \checkmark \checkmark 139 0.2 0.3 0.2 0.3 0 \checkmark \checkmark \checkmark 140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark \checkmark 141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 142 0.2 0.2 0.6 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.4 0.2 0 \checkmark \checkmark 144 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 147 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 151 0.2 0.1 <td>137</td> <td>0.2</td> <td>0.3</td> <td>0.4</td> <td>0.1</td> <td>0</td> <td>✓</td> <td>✓</td> <td>✓</td>	137	0.2	0.3	0.4	0.1	0	✓	✓	✓
139 0.2 0.3 0.2 0.3 0 \checkmark \checkmark \checkmark 140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark \checkmark 141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 141 0.2 0.2 0.6 0 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.4 0.2 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.4 0.2 \checkmark \checkmark \checkmark 145 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 144 0.2 0.1 0.7 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.5 0.2 0 \checkmark \checkmark 151 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 152 0.2 0.1 <td>138</td> <td>0.2</td> <td>0.3</td> <td>0.3</td> <td>0.2</td> <td>0</td> <td>✓</td> <td>✓</td> <td>✓</td>	138	0.2	0.3	0.3	0.2	0	✓	✓	✓
140 0.2 0.3 0.1 0.4 0 \checkmark \checkmark \checkmark 141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 142 0.2 0.2 0.6 0 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.4 0.2 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 145 0.2 0.2 0.3 0.3 0 \checkmark \checkmark \checkmark 146 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 147 0.2 0.1 0.6 0 \checkmark \checkmark \checkmark 148 0.2 0.1 0.6 0.1 0 \checkmark \checkmark \checkmark 151 0.2 0.1 0.4 0.3 0 \checkmark \checkmark 154 0.2	139	0.2	0.3	0.2	0.3	0	✓	✓	✓
141 0.2 0.3 0 0.5 0 \checkmark \checkmark \checkmark 142 0.2 0.2 0.6 0 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.5 0.1 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.4 0.2 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.3 0.3 0 \checkmark \checkmark \checkmark 145 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 146 0.2 0.2 0.1 0.5 0 \checkmark \checkmark 149 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 151 0.2 0.1 0.3 0.4 0 \checkmark \checkmark \checkmark 153 0.2	140	0.2	0.3	0.1	0.4	0	✓	✓	✓
142 0.2 0.6 0 \checkmark \checkmark \checkmark 143 0.2 0.2 0.5 0.1 0 \checkmark \checkmark 144 0.2 0.2 0.3 0.3 0 \checkmark \checkmark 145 0.2 0.2 0.3 0.3 0 \checkmark \checkmark 145 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 146 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 147 0.2 0.2 0 0.6 0 \checkmark \checkmark 148 0.2 0.1 0.7 0 0 \checkmark \checkmark 150 0.2 0.1 0.5 0.2 0 \checkmark \checkmark 151 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 152 0.2 0.1 0.2 0.5 0 \checkmark \checkmark 155	141	0.2	0.3	0	0.5	0	✓	✓	✓
143 0.2 0.2 0.5 0.1 0 \checkmark \checkmark \checkmark 144 0.2 0.2 0.3 0.3 0 \checkmark \checkmark \checkmark 145 0.2 0.2 0.3 0.3 0 \checkmark \checkmark \checkmark 145 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 146 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 148 0.2 0.1 0.6 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.5 0.2 0 \checkmark \checkmark 151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 152 0.2 0.1 0.3 0.4 0 \checkmark \checkmark \checkmark 154 0.2 0.1 0 0.7 0 \checkmark \checkmark \checkmark 155 0.2 <td>142</td> <td>0.2</td> <td>0.2</td> <td>0.6</td> <td>0</td> <td>0</td> <td>✓</td> <td>✓</td> <td>✓</td>	142	0.2	0.2	0.6	0	0	✓	✓	✓
144 0.2 0.4 0.2 0 \checkmark \checkmark 145 0.2 0.2 0.3 0.3 0 \checkmark \checkmark 145 0.2 0.2 0.3 0.3 0 \checkmark \checkmark 146 0.2 0.2 0.1 0.5 0 \checkmark \checkmark 147 0.2 0.2 0.1 0.5 0 \checkmark \checkmark 148 0.2 0.2 0 0.6 0 \checkmark \checkmark 149 0.2 0.1 0.7 0 0 \checkmark \checkmark 150 0.2 0.1 0.6 0.1 0 \checkmark \checkmark 151 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 154 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 155 0.2 0.1 0.7 0 \checkmark \checkmark 155 0.2	143	0.2	0.2	0.5	0.1	0	✓	✓	✓
145 0.2 0.2 0.3 0.3 0 \checkmark \checkmark \checkmark 146 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 147 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 148 0.2 0.2 0 0.6 0 \checkmark \checkmark \checkmark 149 0.2 0.1 0.6 0.1 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.6 0.1 0 \checkmark \checkmark \checkmark 151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 152 0.2 0.1 0.3 0.4 0 \checkmark \checkmark \checkmark 154 0.2 0.1 0.1 0.6 0 \checkmark \checkmark 155 0.2 0.1 0 0.7 0 \checkmark \checkmark 156 0.2	144	0.2	0.2	0.4	0.2	0	✓	✓	✓
146 0.2 0.2 0.4 0 \checkmark \checkmark \checkmark 147 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 148 0.2 0.2 0 0.6 0 \checkmark \checkmark \checkmark 149 0.2 0.1 0.7 0 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.6 0.1 0 \checkmark \checkmark \checkmark 151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 152 0.2 0.1 0.4 0.3 0 \checkmark \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark \checkmark 155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark 155 0.2 0 0.7 0.1 \checkmark \checkmark \checkmark 156 0.2	145	0.2	0.2	0.3	0.3	0	✓	✓	✓
147 0.2 0.2 0.1 0.5 0 \checkmark \checkmark \checkmark 148 0.2 0.2 0 0.6 0 \checkmark \checkmark \checkmark 149 0.2 0.1 0.7 0 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.6 0.1 0 \checkmark \checkmark \checkmark 151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 152 0.2 0.1 0.4 0.3 0 \checkmark \checkmark \checkmark 153 0.2 0.1 0.2 0.5 0 \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark 157 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 158 0.2	146	0.2	0.2	0.2	0.4	0	✓	✓	✓
148 0.2 0.2 0 0.6 0 \checkmark \checkmark \checkmark 149 0.2 0.1 0.7 0 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.6 0.1 0 \checkmark \checkmark 151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark 152 0.2 0.1 0.4 0.3 0 \checkmark \checkmark 153 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark 161 0.2 0 0.5 0.3 0 \checkmark <td< td=""><td>147</td><td>0.2</td><td>0.2</td><td>0.1</td><td>0.5</td><td>0</td><td>✓</td><td>✓</td><td>✓</td></td<>	147	0.2	0.2	0.1	0.5	0	✓	✓	✓
149 0.2 0.1 0.7 0 0 \checkmark \checkmark \checkmark 150 0.2 0.1 0.6 0.1 0 \checkmark \checkmark \checkmark 151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark 152 0.2 0.1 0.4 0.3 0 \checkmark \checkmark 153 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark 155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark 161 0.2 0 0.3 0.5 0 \checkmark	148	0.2	0.2	0	0.6	0	✓	✓	✓
150 0.2 0.1 0.6 0.1 0 \checkmark \checkmark \checkmark 151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 152 0.2 0.1 0.4 0.3 0 \checkmark \checkmark 153 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark 155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark 161 0.2 0 0.3 0.5 0 \checkmark <	149	0.2	0.1	0.7	0	0	✓	✓	✓
151 0.2 0.1 0.5 0.2 0 \checkmark \checkmark \checkmark 152 0.2 0.1 0.4 0.3 0 \checkmark \checkmark \checkmark 153 0.2 0.1 0.3 0.4 0 \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark 155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark 155 0.2 0.1 0 0.7 0 \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark 161 0.2 0 0.3 0.5 0 \checkmark \checkmark 163 0.2 0 0.1 0.7 \circ \checkmark	150	0.2	0.1	0.6	0.1	0	✓	✓	✓
152 0.2 0.1 0.4 0.3 0 \checkmark \checkmark \checkmark 153 0.2 0.1 0.3 0.4 0 \checkmark \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark \checkmark 155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark \checkmark 161 0.2 0 0.5 0.3 0 \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark 164 <	151	0.2	0.1	0.5	0.2	0	✓	✓	✓
153 0.2 0.1 0.3 0.4 0 \checkmark \checkmark \checkmark 154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark \checkmark 155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark \checkmark 161 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark 163 0.2 0 0.1 0.7 0 \checkmark \checkmark 164 <td< td=""><td>152</td><td>0.2</td><td>0.1</td><td>0.4</td><td>0.3</td><td>0</td><td>✓</td><td>✓</td><td>✓</td></td<>	152	0.2	0.1	0.4	0.3	0	✓	✓	✓
154 0.2 0.1 0.2 0.5 0 \checkmark \checkmark \checkmark 155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 161 0.2 0 0.5 0.3 0 \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark 163 0.2 0 0.1 0.7 0 \checkmark \checkmark 164 0.2 0 0.1 0.7 0 \checkmark \checkmark 164 0.2 0 0 </td <td>153</td> <td>0.2</td> <td>0.1</td> <td>0.3</td> <td>0.4</td> <td>0</td> <td>✓</td> <td>✓</td> <td>✓</td>	153	0.2	0.1	0.3	0.4	0	✓	✓	✓
155 0.2 0.1 0.1 0.6 0 \checkmark \checkmark \checkmark 156 0.2 0.1 0 0.7 0 \checkmark \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark \checkmark 158 0.2 0 0.7 0.1 0 \checkmark \checkmark \checkmark 159 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark \checkmark 161 0.2 0 0.4 0.4 0 \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark 163 0.2 0 0.1 0.7 0 \checkmark \checkmark 166 0.1 0.9 0 0 0 \checkmark \checkmark 168 0.1 0.8 0 <td>154</td> <td>0.2</td> <td>0.1</td> <td>0.2</td> <td>0.5</td> <td>0</td> <td>✓</td> <td>✓</td> <td>✓</td>	154	0.2	0.1	0.2	0.5	0	✓	✓	✓
156 0.2 0.1 0 0.7 0 \checkmark \checkmark \checkmark 157 0.2 0 0.8 0 0 \checkmark \checkmark \checkmark 158 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 159 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark \checkmark 161 0.2 0 0.4 0.4 0 \checkmark \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 163 0.2 0 0.1 0.7 0 \checkmark \checkmark \checkmark 164 0.2 0 0.1 0.7 \checkmark \checkmark \checkmark 165 0.2 0 0 0 \checkmark \checkmark \checkmark 166 0.1 </td <td>155</td> <td>0.2</td> <td>0.1</td> <td>0.1</td> <td>0.6</td> <td>0</td> <td>✓</td> <td>✓</td> <td>✓</td>	155	0.2	0.1	0.1	0.6	0	✓	✓	✓
157 0.2 0 0.8 0 \checkmark \checkmark \checkmark 158 0.2 0 0.7 0.1 0 \checkmark \checkmark \checkmark 159 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark \checkmark 161 0.2 0 0.4 0.4 0 \checkmark \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 163 0.2 0 0.1 0.7 0 \checkmark \checkmark 164 0.2 0 0.1 0.7 0 \checkmark \checkmark 165 0.2 0 0 0 \checkmark \checkmark \checkmark 165 0.1 0.8 0.1 0 \checkmark \checkmark \checkmark 166 0.1 0.7 0.2 0 </td <td>156</td> <td>0.2</td> <td>0.1</td> <td>0</td> <td>0.7</td> <td>0</td> <td>✓</td> <td> ✓ </td> <td>✓</td>	156	0.2	0.1	0	0.7	0	✓	 ✓ 	✓
158 0.2 0 0.7 0.1 0 \checkmark \checkmark \checkmark 159 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark \checkmark 161 0.2 0 0.4 0.4 0 \checkmark \checkmark \checkmark 161 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 163 0.2 0 0.1 0.7 0 \checkmark \checkmark \checkmark 164 0.2 0 0.1 0.7 0 \checkmark \checkmark \checkmark 165 0.2 0 0 0 \checkmark \checkmark \checkmark 166 0.1 0.8 0.1 0 \checkmark \checkmark \checkmark 168 0.1	157	0.2	0	0.8	0	0	✓	✓	✓
159 0.2 0 0.6 0.2 0 \checkmark \checkmark \checkmark 160 0.2 0 0.5 0.3 0 \checkmark \checkmark \checkmark 161 0.2 0 0.4 0.4 0 \checkmark \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 163 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 163 0.2 0 0.2 0.6 0 \checkmark \checkmark \checkmark 164 0.2 0 0.1 0.7 0 \checkmark \checkmark \checkmark 166 0.1 0.9 0 0 \checkmark \checkmark \checkmark 166 0.1 0.8 0.1 0 \checkmark \checkmark \checkmark 168 0.1 0.7 0.2 0 \checkmark \checkmark \checkmark 170 0.1 <td< td=""><td>158</td><td>0.2</td><td>0</td><td>0.7</td><td>0.1</td><td>0</td><td>✓</td><td>✓</td><td>✓</td></td<>	158	0.2	0	0.7	0.1	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	159	0.2	0	0.6	0.2	0	✓	✓	✓
161 0.2 0 0.4 0.4 0 \checkmark \checkmark \checkmark 162 0.2 0 0.3 0.5 0 \checkmark \checkmark \checkmark 163 0.2 0 0.2 0.6 0 \checkmark \checkmark \checkmark 163 0.2 0 0.1 0.7 0 \checkmark \checkmark \checkmark 164 0.2 0 0.1 0.7 0 \checkmark \checkmark \checkmark 165 0.2 0 0 0.8 0 \checkmark \checkmark \checkmark 166 0.1 0.9 0 0 \checkmark \checkmark \checkmark 167 0.1 0.8 0.1 0 \checkmark \checkmark \checkmark 168 0.1 0.8 0 0.1 0 \checkmark \checkmark 170 0.1 0.7 0.2 0 \checkmark \checkmark \checkmark 171 0.1 0.6 0	160	0.2	0	0.5	0.3	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	161	0.2	0	0.4	0.4	0	✓	✓	✓
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	162	0.2	0	0.3	0.5	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	163	0.2	0	0.2	0.6	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	164	0.2	0	0.1	0.7	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	165	0.2	0	0	0.8	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	166	0.1	0.9	0	0	0	√	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	167	0.1	0.8	0.1	0	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	168	0.1	0.8	0	0.1	0	✓	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	169	0.1	0.7	0.2	0	0	√	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	170	0.1	0.7	0.1	0.1	0	√	✓	✓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	171	0.1	0.7	0	0.2	0	✓	✓	✓
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	172	0.1	0.6	0.3	0	0	✓	✓	✓
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	173	0.1	0.6	0.2	0.1	0	✓	✓	✓
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	174	0.1	0.6	0.1	0.2	0	✓	✓	✓
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	175	0.1	0.6	0	0.3	0	✓	✓	✓
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	176	0.1	0.5	0.4	0	0	✓	✓	✓
	177	0.1	0.5	0.3	0.1	0	✓	✓	✓
	178	0.1	0.5	0.2	0.2	0	✓	✓	✓

179	0.1	0.5	0.1	0.3	0	\checkmark	✓	✓
180	0.1	0.5	0	0.4	0	✓	✓	✓
181	0.1	0.4	0.5	0	0	✓	✓	✓
182	0.1	0.4	0.4	0.1	0	\checkmark	✓	✓
183	0.1	0.4	0.3	0.2	0	\checkmark	✓	√
184	0.1	0.4	0.2	0.3	0	\checkmark	✓	√
185	0.1	0.4	0.1	0.4	0	\checkmark	✓	√
186	0.1	0.4	0	0.5	0	\checkmark	✓	✓
187	0.1	0.3	0.6	0	0	✓	✓	✓
188	0.1	0.3	0.5	0.1	0	\checkmark	✓	✓
189	0.1	0.3	0.4	0.2	0	\checkmark	✓	✓
190	0.1	0.3	0.3	0.3	0	\checkmark	✓	✓
191	0.1	0.3	0.2	0.4	0	✓	✓	✓
192	0.1	0.3	0.1	0.5	0	\checkmark	✓	✓
193	0.1	0.3	0	0.6	0	✓	✓	✓
194	0.1	0.2	0.7	0	0	\checkmark	✓	✓
195	0.1	0.2	0.6	0.1	0	✓	✓	✓
196	0.1	0.2	0.5	0.2	0	\checkmark	✓	✓
197	0.1	0.2	0.4	0.3	0	\checkmark	✓	✓
198	0.1	0.2	0.3	0.4	0	\checkmark	✓	✓
199	0.1	0.2	0.2	0.5	0	\checkmark	✓	✓
200	0.1	0.2	0.1	0.6	0	\checkmark	✓	✓
201	0.1	0.2	0	0.7	0	\checkmark	✓	✓
202	0.1	0.1	0.8	0	0	\checkmark	✓	✓
203	0.1	0.1	0.7	0.1	0	✓	✓	✓
204	0.1	0.1	0.6	0.2	0	✓	✓	✓
205	0.1	0.1	0.5	0.3	0	✓	✓	✓
206	0.1	0.1	0.4	0.4	0	\checkmark	✓	✓
207	0.1	0.1	0.3	0.5	0	\checkmark	✓	✓
208	0.1	0.1	0.2	0.6	0	\checkmark	✓	✓
209	0.1	0.1	0.1	0.7	0	\checkmark	✓	✓
210	0.1	0.1	0	0.8	0	\checkmark	✓	✓
211	0.1	0	0.9	0	0	✓	✓	✓
212	0.1	0	0.8	0.1	0	✓	✓	✓
213	0.1	0	0.7	0.2	0	\checkmark	✓	✓
214	0.1	0	0.6	0.3	0	\checkmark	✓	✓
215	0.1	0	0.5	0.4	0	\checkmark	✓	✓
216	0.1	0	0.4	0.5	0	\checkmark	✓	✓
217	0.1	0	0.3	0.6	0	\checkmark	✓	✓
218	0.1	0	0.2	0.7	0	\checkmark	✓	✓
219	0.1	0	0.1	0.8	0	\checkmark	✓	✓
220	0.1	0	0	0.9	0	\checkmark	✓	✓
221	0	1	0	0	0	\checkmark	✓	✓
222	0	0.9	0.1	0	0	\checkmark	✓	✓
223	0	0.9	0	0.1	0	\checkmark	✓	✓
224	0	0.8	0.2	0	0	\checkmark	✓	✓
225	0	0.8	0.1	0.1	0	\checkmark	\checkmark	✓

226	0	0.8	0	0.2	0	✓	✓	✓
227	0	0.7	0.3	0	0	✓	✓	✓
228	0	0.7	0.2	0.1	0	✓	✓	✓
229	0	0.7	0.1	0.2	0	√	✓	√
230	0	0.7	0	0.3	0	√	✓	√
231	0	0.6	0.4	0	0	√	✓	√
232	0	0.6	0.3	0.1	0	√	✓	√
233	0	0.6	0.2	0.2	0	✓	✓	✓
234	0	0.6	0.1	0.3	0	✓	✓	✓
235	0	0.6	0	0.4	0	✓	✓	✓
236	0	0.5	0.5	0	0	✓	✓	✓
237	0	0.5	0.4	0.1	0	✓	✓	✓
238	0	0.5	0.3	0.2	0	✓	✓	✓
239	0	0.5	0.2	0.3	0	✓	✓	✓
240	0	0.5	0.1	0.4	0	✓	✓	✓
241	0	0.5	0	0.5	0	✓	✓	✓
242	0	0.4	0.6	0	0	✓	✓	✓
243	0	0.4	0.5	0.1	0	✓	✓	✓
244	0	0.4	0.4	0.2	0	✓	✓	✓
245	0	0.4	0.3	0.3	0	✓	✓	✓
246	0	0.4	0.2	0.4	0	✓	✓	✓
247	0	0.4	0.1	0.5	0	✓	✓	✓
248	0	0.4	0	0.6	0	✓	✓	✓
249	0	0.3	0.7	0	0	✓	✓	✓
250	0	0.3	0.6	0.1	0	✓	✓	✓
251	0	0.3	0.5	0.2	0	✓	✓	✓
252	0	0.3	0.4	0.3	0	✓	✓	✓
253	0	0.3	0.3	0.4	0	✓	✓	✓
254	0	0.3	0.2	0.5	0	✓	✓	✓
255	0	0.3	0.1	0.6	0	✓	✓	✓
256	0	0.3	0	0.7	0	✓	✓	✓
257	0	0.2	0.8	0	0	✓	✓	✓
258	0	0.2	0.7	0.1	0	✓	✓	✓
259	0	0.2	0.6	0.2	0	✓	✓	✓
260	0	0.2	0.5	0.3	0	✓	✓	✓
261	0	0.2	0.4	0.4	0	✓	✓	✓
262	0	0.2	0.3	0.5	0	✓	✓	✓
263	0	0.2	0.2	0.6	0	✓	✓	✓
264	0	0.2	0.1	0.7	0	✓	✓	✓
265	0	0.2	0	0.8	0	✓	✓	✓
266	0	0.1	0.9	0	0	✓	✓	✓
267	0	0.1	0.8	0.1	0	✓	✓	✓
268	0	0.1	0.7	0.2	0	\checkmark	✓	✓
269	0	0.1	0.6	0.3	0	✓	✓	✓
270	0	0.1	0.5	0.4	0	\checkmark	✓	✓
271	0	0.1	0.4	0.5	0	✓	✓	✓
272	0	0.1	0.3	0.6	0	\checkmark	✓	\checkmark

273	0	0.1	0.2	0.7	0	✓	✓	✓
274	0	0.1	0.1	0.8	0	✓	✓	✓
275	0	0.1	0	0.9	0	✓	✓	✓
276	0	0	1	0	0	√	✓	√
277	0	0	0.9	0.1	0	√	✓	√
278	0	0	0.8	0.2	0	√	✓	√
279	0	0	0.7	0.3	0	√	✓	√
280	0	0	0.6	0.4	0	✓	✓	✓
281	0	0	0.5	0.5	0	✓	✓	✓
282	0	0	0.4	0.6	0	✓	✓	✓
283	0	0	0.3	0.7	0	✓	✓	✓
284	0	0	0.2	0.8	0	✓	✓	✓
285	0	0	0.1	0.9	0	✓	✓	✓
286	0	0	0	1	0	✓	✓	✓
287	0.9	0	0	0	0.1	✓	✓	✓
288	0.8	0.1	0	0	0.1	✓	✓	✓
289	0.8	0	0.1	0	0.1	✓	✓	✓
290	0.8	0	0	0.1	0.1	✓	✓	✓
291	0.7	0.2	0	0	0.1	✓	✓	✓
292	0.7	0.1	0.1	0	0.1	✓	✓	✓
293	0.7	0.1	0	0.1	0.1	✓	✓	✓
294	0.7	0	0.2	0	0.1	✓	✓	✓
295	0.7	0	0.1	0.1	0.1	✓	✓	✓
296	0.7	0	0	0.2	0.1	✓	✓	✓
297	0.6	0.3	0	0	0.1	✓	✓	✓
298	0.6	0.2	0.1	0	0.1	✓	✓	✓
299	0.6	0.2	0	0.1	0.1	✓	✓	✓
300	0.6	0.1	0.2	0	0.1	✓	✓	✓
301	0.6	0.1	0.1	0.1	0.1	✓	✓	✓
302	0.6	0.1	0	0.2	0.1	✓	✓	✓
303	0.6	0	0.3	0	0.1	✓	✓	✓
304	0.6	0	0.2	0.1	0.1	✓	✓	✓
305	0.6	0	0.1	0.2	0.1	✓	✓	✓
306	0.6	0	0	0.3	0.1	✓	✓	✓
307	0.5	0.4	0	0	0.1	✓	✓	✓
308	0.5	0.3	0.1	0	0.1	✓	√	✓
309	0.5	0.3	0	0.1	0.1	✓	✓	✓
310	0.5	0.2	0.2	0	0.1	✓	✓	✓
311	0.5	0.2	0.1	0.1	0.1	✓	√	✓
312	0.5	0.2	0	0.2	0.1	✓	✓	✓
313	0.5	0.1	0.3	0	0.1	✓	✓	✓
314	0.5	0.1	0.2	0.1	0.1	✓	√	✓
315	0.5	0.1	0.1	0.2	0.1	✓	✓	✓
316	0.5	0.1	0	0.3	0.1	√	√	√
317	0.5	0	0.4	0	0.1	✓	✓	✓
318	0.5	0	0.3	0.1	0.1	✓	✓	✓
319	0.5	0	0.2	0.2	0.1	\checkmark	✓	✓

320	0.5	0	0.1	0.3	0.1	✓	✓	✓
321	0.5	0	0	0.4	0.1	✓	✓	✓
322	0.4	0.5	0	0	0.1	✓	✓	✓
323	0.4	0.4	0.1	0	0.1	√	✓	✓
324	0.4	0.4	0	0.1	0.1	✓	✓	√
325	0.4	0.3	0.2	0	0.1	✓	✓	√
326	0.4	0.3	0.1	0.1	0.1	✓	✓	√
327	0.4	0.3	0	0.2	0.1	✓	✓	√
328	0.4	0.2	0.2	0.1	0.1	✓	✓	✓
329	0.4	0.2	0.3	0	0.1	✓	✓	✓
330	0.4	0	0.3	0.2	0.1	✓	✓	✓
331	0.4	0.2	0	0.3	0.1	\checkmark	✓	✓
332	0.4	0	0.2	0.3	0.1	\checkmark	✓	✓
333	0.4	0.2	0.1	0.2	0.1	\checkmark	✓	✓
334	0.4	0.1	0.4	0	0.1	✓	✓	\checkmark
335	0.4	0.1	0.3	0.1	0.1	✓	✓	✓
336	0.4	0.1	0.2	0.2	0.1	✓	✓	\checkmark
337	0.4	0.1	0.1	0.3	0.1	✓	✓	✓
338	0.4	0.1	0	0.4	0.1	✓	✓	✓
339	0.4	0	0.5	0	0.1	✓	✓	√
340	0.4	0	0.4	0.1	0.1	✓	✓	√
341	0.4	0	0.1	0.4	0.1	✓	✓	√
342	0.4	0	0	0.5	0.1	✓	✓	√
343	0.3	0.6	0	0	0.1	✓	✓	✓
344	0.3	0.5	0.1	0	0.1	✓	✓	√
345	0.3	0.5	0	0.1	0.1	✓	✓	✓
346	0.3	0.4	0.2	0	0.1	✓	✓	✓
347	0.3	0.4	0.1	0.1	0.1	✓	✓	✓
348	0.3	0.4	0	0.2	0.1	✓	✓	✓
349	0.3	0.3	0.3	0	0.1	✓	✓	✓
350	0.3	0.3	0.2	0.1	0.1	✓	✓	✓
351	0.3	0.3	0.1	0.2	0.1	✓	✓	✓
352	0.3	0.3	0	0.3	0.1	✓	✓	✓
353	0.3	0.2	0.4	0	0.1	✓	✓	✓
354	0.3	0.2	0.3	0.1	0.1	✓	✓	✓
355	0.3	0.2	0.2	0.2	0.1	✓	✓	✓
356	0.3	0.2	0.1	0.3	0.1	✓	✓	✓
357	0.3	0.2	0	0.4	0.1	✓	✓	✓
358	0.3	0.1	0.5	0	0.1	✓	✓	✓
359	0.3	0.1	0.4	0.1	0.1	✓	✓	✓
360	0.3	0.1	0.3	0.2	0.1	✓	✓	✓
361	0.3	0.1	0.2	0.3	0.1	✓	✓	✓
362	0.3	0.1	0.1	0.4	0.1	✓	✓	✓
363	0.3	0.1	0	0.5	0.1	✓	✓	✓
364	0.3	0	0.6	0	0.1	✓	✓	✓
365	0.3	0	0.5	0.1	0.1	\checkmark	✓	✓
366	0.3	0	0.4	0.2	0.1	\checkmark	✓	√

367	0.3	0	0.3	0.3	0.1	\checkmark	✓	✓
368	0.3	0	0.2	0.4	0.1	✓	✓	✓
369	0.3	0	0.1	0.5	0.1	✓	✓	✓
370	0.3	0	0	0.6	0.1	\checkmark	✓	✓
371	0.2	0.7	0	0	0.1	\checkmark	✓	√
372	0.2	0.6	0.1	0	0.1	\checkmark	✓	√
373	0.2	0.6	0	0.1	0.1	\checkmark	✓	√
374	0.2	0.5	0.2	0	0.1	\checkmark	✓	✓
375	0.2	0.5	0.1	0.1	0.1	✓	✓	✓
376	0.2	0.5	0	0.2	0.1	\checkmark	✓	✓
377	0.2	0.4	0.3	0	0.1	✓	✓	✓
378	0.2	0.4	0.2	0.1	0.1	✓	✓	✓
379	0.2	0.4	0.1	0.2	0.1	✓	✓	✓
380	0.2	0.4	0	0.3	0.1	\checkmark	✓	✓
381	0.2	0.3	0.4	0	0.1	✓	✓	✓
382	0.2	0.3	0.3	0.1	0.1	\checkmark	✓	✓
383	0.2	0.3	0.2	0.2	0.1	✓	✓	✓
384	0.2	0.3	0.1	0.3	0.1	\checkmark	✓	✓
385	0.2	0.3	0	0.4	0.1	\checkmark	✓	✓
386	0.2	0.2	0.5	0	0.1	\checkmark	✓	✓
387	0.2	0.2	0.4	0.1	0.1	\checkmark	✓	✓
388	0.2	0.2	0.3	0.2	0.1	\checkmark	✓	√
389	0.2	0.2	0.2	0.3	0.1	\checkmark	✓	✓
390	0.2	0.2	0.1	0.4	0.1	\checkmark	✓	✓
391	0.2	0.2	0	0.5	0.1	\checkmark	✓	√
392	0.2	0.1	0.6	0	0.1	\checkmark	✓	✓
393	0.2	0.1	0.5	0.1	0.1	\checkmark	✓	✓
394	0.2	0.1	0.4	0.2	0.1	\checkmark	✓	✓
395	0.2	0.1	0.3	0.3	0.1	\checkmark	✓	✓
396	0.2	0.1	0.2	0.4	0.1	\checkmark	✓	✓
397	0.2	0.1	0.1	0.5	0.1	\checkmark	✓	✓
398	0.2	0.1	0	0.6	0.1	\checkmark	✓	✓
399	0.2	0	0.7	0	0.1	\checkmark	✓	✓
400	0.2	0	0.6	0.1	0.1	\checkmark	✓	✓
401	0.2	0	0.5	0.2	0.1	\checkmark	✓	✓
402	0.2	0	0.4	0.3	0.1	\checkmark	✓	✓
403	0.2	0	0.3	0.4	0.1	\checkmark	\checkmark	✓
404	0.2	0	0.2	0.5	0.1	✓	_ ✓	✓
405	0.2	0	0.1	0.6	0.1	✓	_ ✓	✓
406	0.2	0	0	0.7	0.1	\checkmark	\checkmark	✓
407	0.1	0.8	0	0	0.1	✓	✓	✓
408	0.1	0.7	0.1	0	0.1	\checkmark	✓	✓
409	0.1	0.7	0	0.1	0.1	\checkmark	\checkmark	\checkmark
410	0.1	0.6	0.2	0	0.1	\checkmark	✓	✓
411	0.1	0.6	0.1	0.1	0.1	\checkmark	✓	✓
412	0.1	0.6	0	0.2	0.1	\checkmark	✓	✓
413	0.1	0.5	0.3	0	0.1	\checkmark	✓	✓

414	0.1	0.5	0.2	0.1	0.1	✓	✓	✓
415	0.1	0.5	0.1	0.2	0.1	✓	✓	✓
416	0.1	0.5	0	0.3	0.1	✓	✓	✓
417	0.1	0.4	0.4	0	0.1	✓	✓	✓
418	0.1	0.4	0.3	0.1	0.1	✓	✓	✓
419	0.1	0.4	0.2	0.2	0.1	✓	✓	✓
420	0.1	0.4	0.1	0.3	0.1	√	✓	✓
421	0.1	0.4	0	0.4	0.1	✓	✓	√
422	0.1	0.3	0.5	0	0.1	✓	✓	√
423	0.1	0.3	0.4	0.1	0.1	✓	✓	✓
424	0.1	0.3	0.3	0.2	0.1	✓	✓	✓
425	0.1	0.3	0.2	0.3	0.1	✓	✓	✓
426	0.1	0.3	0.1	0.4	0.1	✓	✓	✓
427	0.1	0.3	0	0.5	0.1	✓	✓	✓
428	0.1	0.2	0.6	0	0.1	✓	✓	✓
429	0.1	0.2	0.5	0.1	0.1	✓	✓	✓
430	0.1	0.2	0.4	0.2	0.1	✓	✓	✓
431	0.1	0.2	0.3	0.3	0.1	✓	✓	✓
432	0.1	0.2	0.2	0.4	0.1	✓	✓	√
433	0.1	0.2	0.1	0.5	0.1	✓	✓	√
434	0.1	0.2	0	0.6	0.1	✓	✓	√
435	0.1	0.1	0.7	0	0.1	✓	✓	√
436	0.1	0.1	0.6	0.1	0.1	✓	✓	√
437	0.1	0.1	0.5	0.2	0.1	✓	✓	√
438	0.1	0.1	0.4	0.3	0.1	\checkmark	✓	✓
439	0.1	0.1	0.3	0.4	0.1	✓	✓	✓
440	0.1	0.1	0.2	0.5	0.1	✓	✓	✓
441	0.1	0.1	0.1	0.6	0.1	✓	✓	✓
442	0.1	0.1	0	0.7	0.1	✓	✓	✓
443	0.1	0	0.8	0	0.1	✓	✓	✓
444	0.1	0	0.7	0.1	0.1	✓	✓	✓
445	0.1	0	0.6	0.2	0.1	\checkmark	✓	√
446	0.1	0	0.5	0.3	0.1	✓	✓	✓
447	0.1	0	0.4	0.4	0.1	\checkmark	✓	✓
448	0.1	0	0.3	0.5	0.1	\checkmark	✓	✓
449	0.1	0	0.2	0.6	0.1	\checkmark	✓	✓
450	0.1	0	0.1	0.7	0.1	\checkmark	\checkmark	\checkmark
451	0.1	0	0	0.8	0.1	✓	_ ✓	✓
452	0	0.9	0	0	0.1	✓	_ ✓	✓
453	0	0.8	0.1	0	0.1	\checkmark	\checkmark	\checkmark
454	0	0.8	0	0.1	0.1	✓	✓	✓
455	0	0.7	0.2	0	0.1	✓	✓	✓
456	0	0.7	0.1	0.1	0.1	\checkmark	\checkmark	\checkmark
457	0	0.7	0	0.2	0.1	✓	✓	✓
458	0	0.6	0.3	0	0.1	✓	✓	✓
459	0	0.6	0.2	0.1	0.1	✓	✓	✓
460	0	0.6	0.1	0.2	0.1	✓	✓	✓

461	0	0.6	0	0.3	0.1	✓	✓	✓
462	0	0.5	0.4	0	0.1	✓	✓	✓
463	0	0.5	0.3	0.1	0.1	✓	✓	✓
464	0	0.5	0.2	0.2	0.1	√	✓	✓
465	0	0.5	0.1	0.3	0.1	✓	✓	√
466	0	0.5	0	0.4	0.1	✓	✓	√
467	0	0.4	0.5	0	0.1	✓	✓	√
468	0	0.4	0.4	0.1	0.1	✓	✓	✓
469	0	0.4	0.3	0.2	0.1	✓	✓	✓
470	0	0.4	0.2	0.3	0.1	\checkmark	✓	✓
471	0	0.4	0.1	0.4	0.1	\checkmark	✓	✓
472	0	0.4	0	0.5	0.1	✓	✓	✓
473	0	0.3	0.6	0	0.1	✓	✓	✓
474	0	0.3	0.5	0.1	0.1	\checkmark	✓	✓
475	0	0.3	0.4	0.2	0.1	✓	✓	✓
476	0	0.3	0.3	0.3	0.1	✓	✓	✓
477	0	0.3	0.2	0.4	0.1	✓	✓	✓
478	0	0.3	0.1	0.5	0.1	✓	✓	✓
479	0	0.3	0	0.6	0.1	✓	✓	✓
480	0	0.2	0.7	0	0.1	✓	✓	✓
481	0	0.2	0.6	0.1	0.1	✓	✓	✓
482	0	0.2	0.5	0.2	0.1	✓	✓	✓
483	0	0.2	0.4	0.3	0.1	✓	✓	✓
484	0	0.2	0.3	0.4	0.1	✓	✓	✓
485	0	0.2	0.2	0.5	0.1	✓	✓	√
486	0	0.2	0.1	0.6	0.1	✓	✓	✓
487	0	0.2	0	0.7	0.1	✓	✓	✓
488	0	0.1	0.8	0	0.1	✓	✓	✓
489	0	0.1	0.7	0.1	0.1	✓	✓	✓
490	0	0.1	0.6	0.2	0.1	✓	✓	✓
491	0	0.1	0.5	0.3	0.1	✓	✓	✓
492	0	0.1	0.4	0.4	0.1	✓	✓	✓
493	0	0.1	0.3	0.5	0.1	✓	✓	✓
494	0	0.1	0.2	0.6	0.1	✓	✓	✓
495	0	0.1	0.1	0.7	0.1	✓	_ ✓	✓
496	0	0.1	0	0.8	0.1	\checkmark	✓	\checkmark
497	0	0	0.9	0	0.1	✓	_ ✓	✓
498	0	0	0.8	0.1	0.1	\checkmark	\checkmark	✓
499	0	0	0.7	0.2	0.1	✓	✓	✓
500	0	0	0.6	0.3	0.1	✓	✓	✓
501	0	0	0.5	0.4	0.1	\checkmark	\checkmark	\checkmark
502	0	0	0.4	0.5	0.1	✓	✓	✓
503	0	0	0.3	0.6	0.1	✓	✓	✓
504	0	0	0.2	0.7	0.1	✓	✓	✓
505	0	0	0.1	0.8	0.1	✓	✓	✓
506	0	0	0	0.9	0.1	✓	✓	✓
507	0.8	0	0	0	0.2	✓	✓	✓

508	0.7	0.1	0	0	0.2	✓	✓	✓
509	0.7	0	0.1	0	0.2	✓	✓	✓
510	0.7	0	0	0.1	0.2	✓	✓	✓
511	0.6	0.2	0	0	0.2	✓	✓	✓
512	0.6	0.1	0.1	0	0.2	✓	✓	✓
513	0.6	0.1	0	0.1	0.2	✓	✓	✓
514	0.6	0	0.2	0	0.2	✓	✓	✓
515	0.6	0	0.1	0.1	0.2	✓	✓	✓
516	0.6	0	0	0.2	0.2	✓	✓	✓
517	0.5	0.3	0	0	0.2	✓	✓	✓
518	0.5	0.2	0.1	0	0.2	✓	✓	✓
519	0.5	0.2	0	0.1	0.2	✓	✓	✓
520	0.5	0.1	0.2	0	0.2	✓	✓	✓
521	0.5	0.1	0.1	0.1	0.2	✓	✓	✓
522	0.5	0.1	0	0.2	0.2	✓	✓	✓
523	0.5	0	0.3	0	0.2	✓	✓	✓
524	0.5	0	0.2	0.1	0.2	✓	✓	✓
525	0.5	0	0.1	0.2	0.2	✓	✓	✓
526	0.5	0	0	0.3	0.2	✓	✓	✓
527	0.4	0.4	0	0	0.2	✓	✓	✓
528	0.4	0.3	0.1	0	0.2	✓	✓	✓
529	0.4	0.3	0	0.1	0.2	✓	✓	✓
530	0.4	0.1	0.3	0	0.2	✓	✓	✓
531	0.4	0	0.3	0.1	0.2	✓	✓	✓
532	0.4	0.1	0	0.3	0.2	✓	✓	✓
533	0.4	0	0.1	0.3	0.2	✓	✓	✓
534	0.4	0.2	0.2	0	0.2	✓	✓	✓
535	0.4	0.2	0.1	0.1	0.2	✓	✓	✓
536	0.4	0.2	0	0.2	0.2	✓	✓	✓
537	0.4	0.1	0.2	0.1	0.2	✓	✓	✓
538	0.4	0.1	0.1	0.2	0.2	✓	✓	✓
539	0.4	0	0.4	0	0.2	✓	✓	✓
540	0.4	0	0.2	0.2	0.2	✓	✓	✓
541	0.4	0	0	0.4	0.2	✓	✓	✓
542	0.3	0.5	0	0	0.2	√	✓	✓
543	0.3	0.4	0.1	0	0.2	\checkmark	✓	✓
544	0.3	0.4	0	0.1	0.2	√	✓	✓
545	0.3	0.3	0.2	0	0.2	\checkmark	✓	✓
546	0.3	0.3	0.1	0.1	0.2	\checkmark	✓	✓
547	0.3	0.3	0	0.2	0.2	\checkmark	\checkmark	✓
548	0.3	0.2	0.3	0	0.2	✓	_ ✓	✓
549	0.3	0.2	0.2	0.1	0.2	✓	✓	✓
550	0.3	0.2	0.1	0.2	0.2	✓	✓	✓
551	0.3	0.2	0	0.3	0.2	✓	✓	✓
552	0.3	0.1	0.4	0	0.2	✓	✓	✓
553	0.3	0.1	0.3	0.1	0.2	✓	✓	✓
554	0.3	0.1	0.2	0.2	0.2	\checkmark	✓	✓

555	0.3	0.1	0.1	0.3	0.2	\checkmark	✓	✓
556	0.3	0.1	0	0.4	0.2	✓	✓	✓
557	0.3	0	0.5	0	0.2	\checkmark	√	✓
558	0.3	0	0.4	0.1	0.2	\checkmark	✓	✓
559	0.3	0	0.3	0.2	0.2	\checkmark	√	√
560	0.3	0	0.2	0.3	0.2	\checkmark	√	√
561	0.3	0	0.1	0.4	0.2	\checkmark	√	√
562	0.3	0	0	0.5	0.2	\checkmark	√	√
563	0.2	0.6	0	0	0.2	✓	✓	✓
564	0.2	0.5	0.1	0	0.2	\checkmark	\checkmark	✓
565	0.2	0.5	0	0.1	0.2	✓	✓	✓
566	0.2	0.4	0.2	0	0.2	\checkmark	\checkmark	✓
567	0.2	0.4	0.1	0.1	0.2	✓	✓	✓
568	0.2	0.4	0	0.2	0.2	\checkmark	✓	✓
569	0.2	0.3	0.3	0	0.2	\checkmark	✓	✓
570	0.2	0.3	0.2	0.1	0.2	\checkmark	\checkmark	✓
571	0.2	0.3	0.1	0.2	0.2	✓	✓	✓
572	0.2	0.3	0	0.3	0.2	\checkmark	\checkmark	✓
573	0.2	0.2	0.4	0	0.2	\checkmark	✓	✓
574	0.2	0.2	0.3	0.1	0.2	\checkmark	√	✓
575	0.2	0.2	0.2	0.2	0.2	\checkmark	√	✓
576	0.2	0.2	0.1	0.3	0.2	\checkmark	√	√
577	0.2	0.2	0	0.4	0.2	\checkmark	√	✓
578	0.2	0.1	0.5	0	0.2	\checkmark	√	✓
579	0.2	0.1	0.4	0.1	0.2	\checkmark	\checkmark	√
580	0.2	0.1	0.3	0.2	0.2	\checkmark	√	✓
581	0.2	0.1	0.2	0.3	0.2	\checkmark	√	✓
582	0.2	0.1	0.1	0.4	0.2	\checkmark	√	✓
583	0.2	0.1	0	0.5	0.2	\checkmark	√	✓
584	0.2	0	0.6	0	0.2	\checkmark	√	✓
585	0.2	0	0.5	0.1	0.2	\checkmark	\checkmark	✓
586	0.2	0	0.4	0.2	0.2	\checkmark	\checkmark	√
587	0.2	0	0.3	0.3	0.2	\checkmark	\checkmark	√
588	0.2	0	0.2	0.4	0.2	\checkmark	√	✓
589	0.2	0	0.1	0.5	0.2	\checkmark	\checkmark	√
590	0.2	0	0	0.6	0.2	\checkmark	\checkmark	✓
591	0.1	0.7	0	0	0.2	\checkmark	\checkmark	✓
592	0.1	0.6	0.1	0	0.2	\checkmark	\checkmark	✓
593	0.1	0.6	0	0.1	0.2	\checkmark	\checkmark	✓
594	0.1	0.5	0.2	0	0.2	\checkmark	✓	✓
595	0.1	0.5	0.1	0.1	0.2	\checkmark	\checkmark	✓
596	0.1	0.5	0	0.2	0.2	✓	✓	✓
597	0.1	0.4	0.3	0	0.2	\checkmark	\checkmark	✓
598	0.1	0.4	0.2	0.1	0.2	\checkmark	√	✓
599	0.1	0.4	0.1	0.2	0.2	√	✓	✓
600	0.1	0.4	0	0.3	0.2	√	✓	✓
601	0.1	0.3	0.4	0	0.2	\checkmark	√	✓

602	0.1	0.3	0.3	0.1	0.2	\checkmark	✓	✓
603	0.1	0.3	0.2	0.2	0.2	✓	✓	✓
604	0.1	0.3	0.1	0.3	0.2	✓	✓	✓
605	0.1	0.3	0	0.4	0.2	\checkmark	✓	✓
606	0.1	0.2	0.5	0	0.2	\checkmark	√	√
607	0.1	0.2	0.4	0.1	0.2	\checkmark	√	√
608	0.1	0.2	0.3	0.2	0.2	\checkmark	√	√
609	0.1	0.2	0.2	0.3	0.2	\checkmark	✓	✓
610	0.1	0.2	0.1	0.4	0.2	✓	✓	✓
611	0.1	0.2	0	0.5	0.2	\checkmark	\checkmark	✓
612	0.1	0.1	0.6	0	0.2	✓	✓	✓
613	0.1	0.1	0.5	0.1	0.2	\checkmark	✓	✓
614	0.1	0.1	0.4	0.2	0.2	✓	✓	✓
615	0.1	0.1	0.3	0.3	0.2	\checkmark	✓	✓
616	0.1	0.1	0.2	0.4	0.2	✓	\checkmark	✓
617	0.1	0.1	0.1	0.5	0.2	✓	✓	✓
618	0.1	0.1	0	0.6	0.2	✓	✓	✓
619	0.1	0	0.7	0	0.2	\checkmark	\checkmark	✓
620	0.1	0	0.6	0.1	0.2	\checkmark	✓	✓
621	0.1	0	0.5	0.2	0.2	\checkmark	✓	✓
622	0.1	0	0.4	0.3	0.2	\checkmark	✓	✓
623	0.1	0	0.3	0.4	0.2	\checkmark	✓	✓
624	0.1	0	0.2	0.5	0.2	\checkmark	✓	✓
625	0.1	0	0.1	0.6	0.2	\checkmark	✓	✓
626	0.1	0	0	0.7	0.2	✓	✓	✓
627	0	0.8	0	0	0.2	✓	✓	✓
628	0	0.7	0.1	0	0.2	✓	\checkmark	✓
629	0	0.7	0	0.1	0.2	\checkmark	\checkmark	✓
630	0	0.6	0.2	0	0.2	\checkmark	✓	✓
631	0	0.6	0.1	0.1	0.2	✓	✓	✓
632	0	0.6	0	0.2	0.2	✓	✓	✓
633	0	0.5	0.3	0	0.2	✓	✓	✓
634	0	0.5	0.2	0.1	0.2	✓	✓	✓
635	0	0.5	0.1	0.2	0.2	✓	✓	✓
636	0	0.5	0	0.3	0.2	✓	✓	✓
637	0	0.4	0.4	0	0.2	✓	✓	✓
638	0	0.4	0.3	0.1	0.2	✓	✓	✓
639	0	0.4	0.2	0.2	0.2	✓	✓	✓
640	0	0.4	0.1	0.3	0.2	√	√	✓
641	0	0.4	0	0.4	0.2	√	√	✓
642	0	0.3	0.5	0	0.2	√	√	✓
643	0	0.3	0.4	0.1	0.2	√	√	✓
644	0	0.3	0.3	0.2	0.2	√	√	✓
645	0	0.3	0.2	0.3	0.2	√	√	✓
646	0	0.3	0.1	0.4	0.2	✓	✓	✓
647	0	0.3	0	0.5	0.2	✓	✓	✓
648	0	0.2	0.6	0	0.2	\checkmark	\checkmark	\checkmark

649	0	0.2	0.5	0.1	0.2	✓	✓	✓
650	0	0.2	0.4	0.2	0.2	✓	✓	✓
651	0	0.2	0.3	0.3	0.2	✓	✓	✓
652	0	0.2	0.2	0.4	0.2	√	✓	✓
653	0	0.2	0.1	0.5	0.2	✓	✓	√
654	0	0.2	0	0.6	0.2	✓	✓	√
655	0	0.1	0.7	0	0.2	✓	✓	√
656	0	0.1	0.6	0.1	0.2	✓	✓	✓
657	0	0.1	0.5	0.2	0.2	✓	✓	✓
658	0	0.1	0.4	0.3	0.2	✓	✓	✓
659	0	0.1	0.3	0.4	0.2	✓	✓	✓
660	0	0.1	0.2	0.5	0.2	✓	✓	✓
661	0	0.1	0.1	0.6	0.2	\checkmark	✓	✓
662	0	0.1	0	0.7	0.2	\checkmark	✓	✓
663	0	0	0.8	0	0.2	✓	✓	✓
664	0	0	0.7	0.1	0.2	✓	✓	✓
665	0	0	0.6	0.2	0.2	✓	✓	✓
666	0	0	0.5	0.3	0.2	✓	✓	✓
667	0	0	0.4	0.4	0.2	✓	✓	✓
668	0	0	0.3	0.5	0.2	✓	✓	✓
669	0	0	0.2	0.6	0.2	✓	✓	✓
670	0	0	0.1	0.7	0.2	✓	✓	✓
671	0	0	0	0.8	0.2	✓	✓	✓
672	0.7	0	0	0	0.3	✓	✓	✓
673	0.6	0.1	0	0	0.3	\checkmark	✓	√
674	0.6	0	0.1	0	0.3	✓	✓	✓
675	0.6	0	0	0.1	0.3	✓	✓	✓
676	0.5	0.2	0	0	0.3	✓	✓	✓
677	0.5	0.1	0.1	0	0.3	✓	✓	✓
678	0.5	0.1	0	0.1	0.3	✓	✓	✓
679	0.5	0	0.2	0	0.3	✓	✓	✓
680	0.5	0	0.1	0.1	0.3	✓	✓	✓
681	0.5	0	0	0.2	0.3	✓	✓	✓
682	0.4	0.3	0	0	0.3	✓	✓	✓
683	0.4	0.2	0.1	0	0.3	✓	✓	✓
684	0.4	0.2	0	0.1	0.3	✓	✓	✓
685	0.4	0.1	0.2	0	0.3	✓	✓	✓
686	0.4	0	0.2	0.1	0.3	✓	✓	✓
687	0.4	0.1	0	0.2	0.3	✓	✓	✓
688	0.4	0	0.1	0.2	0.3	\checkmark	✓	✓
689	0.4	0.1	0.1	0.1	0.3	✓	✓	✓
690	0.4	0	0.3	0	0.3	✓	✓	✓
691	0.4	0	0	0.3	0.3	✓	✓	✓
692	0.3	0.4	0	0	0.3	✓	✓	✓
693	0.3	0.3	0.1	0	0.3	✓	✓	✓
694	0.3	0.3	0	0.1	0.3	\checkmark	✓	✓
695	0.3	0.2	0.2	0	0.3	\checkmark	✓	✓

696	0.3	0.2	0.1	0.1	0.3	✓	✓	✓
697	0.3	0.2	0	0.2	0.3	✓	✓	✓
698	0.3	0.1	0.3	0	0.3	✓	✓	✓
699	0.3	0.1	0.2	0.1	0.3	√	✓	✓
700	0.3	0.1	0.1	0.2	0.3	√	✓	✓
701	0.3	0.1	0	0.3	0.3	√	✓	✓
702	0.3	0	0.4	0	0.3	√	✓	✓
703	0.3	0	0.3	0.1	0.3	√	✓	✓
704	0.3	0	0.2	0.2	0.3	✓	✓	✓
705	0.3	0	0.1	0.3	0.3	✓	✓	√
706	0.3	0	0	0.4	0.3	✓	✓	√
707	0.2	0.5	0	0	0.3	✓	✓	√
708	0.2	0.4	0.1	0	0.3	✓	✓	√
709	0.2	0.4	0	0.1	0.3	✓	✓	√
710	0.2	0.3	0.2	0	0.3	✓	✓	√
711	0.2	0.3	0.1	0.1	0.3	✓	✓	√
712	0.2	0.3	0	0.2	0.3	✓	✓	√
713	0.2	0.2	0.3	0	0.3	✓	✓	√
714	0.2	0.2	0.2	0.1	0.3	✓	✓	√
715	0.2	0.2	0.1	0.2	0.3	✓	✓	√
716	0.2	0.2	0	0.3	0.3	✓	✓	√
717	0.2	0.1	0.4	0	0.3	✓	✓	√
718	0.2	0.1	0.3	0.1	0.3	✓	✓	√
719	0.2	0.1	0.2	0.2	0.3	✓	✓	✓
720	0.2	0.1	0.1	0.3	0.3	✓	✓	√
721	0.2	0.1	0	0.4	0.3	✓	✓	✓
722	0.2	0	0.5	0	0.3	✓	✓	✓
723	0.2	0	0.4	0.1	0.3	✓	✓	\checkmark
724	0.2	0	0.3	0.2	0.3	✓	✓	✓
725	0.2	0	0.2	0.3	0.3	✓	✓	✓
726	0.2	0	0.1	0.4	0.3	✓	✓	✓
727	0.2	0	0	0.5	0.3	✓	✓	✓
728	0.1	0.6	0	0	0.3	✓	✓	✓
729	0.1	0.5	0.1	0	0.3	✓	✓	✓
730	0.1	0.5	0	0.1	0.3	✓	✓	✓
731	0.1	0.4	0.2	0	0.3	✓	✓	✓
732	0.1	0.4	0.1	0.1	0.3	✓	√	✓
733	0.1	0.4	0	0.2	0.3	✓	✓	 ✓
734	0.1	0.3	0.3	0	0.3	✓	√	✓
735	0.1	0.3	0.2	0.1	0.3	✓	✓	 ✓
736	0.1	0.3	0.1	0.2	0.3	√	√	✓
737	0.1	0.3	0	0.3	0.3	√	√	✓
738	0.1	0.2	0.4	0	0.3	√	√	✓
739	0.1	0.2	0.3	0.1	0.3	√	√	√
740	0.1	0.2	0.2	0.2	0.3	√	√	✓
741	0.1	0.2	0.1	0.3	0.3	√	√	✓
742	0.1	0.2	0	0.4	0.3	\checkmark	✓	✓

743	0.1	0.1	0.5	0	0.3	✓	✓	✓
744	0.1	0.1	0.4	0.1	0.3	✓	✓	✓
745	0.1	0.1	0.3	0.2	0.3	✓	✓	✓
746	0.1	0.1	0.2	0.3	0.3	✓	✓	√
747	0.1	0.1	0.1	0.4	0.3	✓	✓	√
748	0.1	0.1	0	0.5	0.3	✓	✓	√
749	0.1	0	0.6	0	0.3	✓	✓	√
750	0.1	0	0.5	0.1	0.3	✓	✓	✓
751	0.1	0	0.4	0.2	0.3	✓	✓	✓
752	0.1	0	0.3	0.3	0.3	\checkmark	✓	✓
753	0.1	0	0.2	0.4	0.3	✓	✓	✓
754	0.1	0	0.1	0.5	0.3	✓	✓	✓
755	0.1	0	0	0.6	0.3	✓	✓	✓
756	0	0.7	0	0	0.3	✓	✓	✓
757	0	0.6	0.1	0	0.3	✓	✓	✓
758	0	0.6	0	0.1	0.3	✓	✓	✓
759	0	0.5	0.2	0	0.3	✓	✓	✓
760	0	0.5	0.1	0.1	0.3	✓	✓	✓
761	0	0.5	0	0.2	0.3	✓	✓	✓
762	0	0.4	0.3	0	0.3	✓	✓	✓
763	0	0.4	0.2	0.1	0.3	✓	✓	✓
764	0	0.4	0.1	0.2	0.3	✓	✓	✓
765	0	0.4	0	0.3	0.3	✓	✓	✓
766	0	0.3	0.4	0	0.3	✓	✓	✓
767	0	0.3	0.3	0.1	0.3	✓	✓	✓
768	0	0.3	0.2	0.2	0.3	✓	✓	✓
769	0	0.3	0.1	0.3	0.3	✓	✓	✓
770	0	0.3	0	0.4	0.3	✓	✓	✓
771	0	0.2	0.5	0	0.3	✓	✓	✓
772	0	0.2	0.4	0.1	0.3	✓	✓	✓
773	0	0.2	0.3	0.2	0.3	✓	✓	✓
774	0	0.2	0.2	0.3	0.3	✓	✓	✓
775	0	0.2	0.1	0.4	0.3	✓	✓	✓
776	0	0.2	0	0.5	0.3	✓	✓	✓
777	0	0.1	0.6	0	0.3	√	√	√
778	0	0.1	0.5	0.1	0.3	√	√	✓
779	0	0.1	0.4	0.2	0.3	√	√	✓
780	0	0.1	0.3	0.3	0.3	√	√	√
781	0	0.1	0.2	0.4	0.3	√	√	√
782	0	0.1	0.1	0.5	0.3	√	√	√
783	0	0.1	0	0.6	0.3	√	√	√
784	0	0	0.7	0	0.3	√	√	√
785	0	0	0.6	0.1	0.3	√	√	√
786	0	0	0.5	0.2	0.3	√	√	√
787	0	0	0.4	0.3	0.3	√	√	√
788	0	0	0.3	0.4	0.3	√	√	✓
789	0	0	0.2	0.5	0.3	✓	 ✓ 	✓

790	0	0	0.1	0.6	0.3	✓	✓	✓
791	0	0	0	0.7	0.3	✓	✓	✓
792	0.6	0	0	0	0.4	√	✓	✓
793	0.5	0.1	0	0	0.4	√	✓	✓
794	0.5	0	0.1	0	0.4	✓	✓	√
795	0.5	0	0	0.1	0.4	✓	✓	√
796	0.4	0.2	0	0	0.4	√	✓	✓
797	0.4	0.1	0.1	0	0.4	✓	✓	√
798	0.4	0.1	0	0.1	0.4	✓	✓	√
799	0.4	0	0.2	0	0.4	✓	✓	√
800	0.4	0	0.1	0.1	0.4	✓	✓	√
801	0.4	0	0	0.2	0.4	✓	✓	√
802	0.3	0.3	0	0	0.4	✓	✓	√
803	0.3	0.2	0.1	0	0.4	✓	✓	✓
804	0.3	0.2	0	0.1	0.4	✓	✓	✓
805	0.3	0.1	0.2	0	0.4	✓	✓	✓
806	0.3	0.1	0.1	0.1	0.4	✓	✓	✓
807	0.3	0.1	0	0.2	0.4	✓	✓	✓
808	0.3	0	0.3	0	0.4	✓	✓	✓
809	0.3	0	0.2	0.1	0.4	✓	✓	✓
810	0.3	0	0.1	0.2	0.4	✓	✓	✓
811	0.3	0	0	0.3	0.4	✓	✓	✓
812	0.2	0.4	0	0	0.4	✓	✓	✓
813	0.2	0.3	0.1	0	0.4	✓	✓	\checkmark
814	0.2	0.3	0	0.1	0.4	✓	✓	✓
815	0.2	0.2	0.2	0	0.4	✓	✓	✓
816	0.2	0.2	0.1	0.1	0.4	✓	✓	✓
817	0.2	0.2	0	0.2	0.4	✓	✓	✓
818	0.2	0.1	0.3	0	0.4	✓	✓	✓
819	0.2	0.1	0.2	0.1	0.4	✓	✓	✓
820	0.2	0.1	0.1	0.2	0.4	✓	✓	✓
821	0.2	0.1	0	0.3	0.4	✓	✓	✓
822	0.2	0	0.4	0	0.4	✓	✓	✓
823	0.2	0	0.3	0.1	0.4	✓	✓	 ✓
824	0.2	0	0.2	0.2	0.4	✓	✓	 ✓
825	0.2	0	0.1	0.3	0.4	√	√	✓
826	0.2	0	0	0.4	0.4	√	√	✓
827	0.1	0.5	0	0	0.4	√	√	√
828	0.1	0.4	0.1	0	0.4	√	√	√
829	0.1	0.4	0	0.1	0.4	√	√	√
830	0.1	0.3	0.2	0	0.4	√	√	√
831	0.1	0.3	0.1	0.1	0.4	√	√	√
832	0.1	0.3	0	0.2	0.4	√	√	√
833	0.1	0.2	0.3	0	0.4	√	√	√
834	0.1	0.2	0.2	0.1	0.4	√	√	√
835	0.1	0.2	0.1	0.2	0.4	√	√	√
836	0.1	0.2	0	0.3	0.4	✓	 ✓ 	 ✓

837	0.1	0.1	0.4	0	0.4	✓	✓	✓
838	0.1	0.1	0.3	0.1	0.4	✓	✓	✓
839	0.1	0.1	0.2	0.2	0.4	✓	✓	√
840	0.1	0.1	0.1	0.3	0.4	✓	✓	✓
841	0.1	0.1	0	0.4	0.4	✓	✓	✓
842	0.1	0	0.5	0	0.4	✓	✓	✓
843	0.1	0	0.4	0.1	0.4	✓	✓	✓
844	0.1	0	0.3	0.2	0.4	✓	✓	✓
845	0.1	0	0.2	0.3	0.4	✓	✓	✓
846	0.1	0	0.1	0.4	0.4	✓	✓	✓
847	0.1	0	0	0.5	0.4	✓	✓	✓
848	0	0.6	0	0	0.4	✓	✓	✓
849	0	0.5	0.1	0	0.4	✓	✓	✓
850	0	0.5	0	0.1	0.4	✓	✓	✓
851	0	0.4	0.2	0	0.4	✓	✓	✓
852	0	0.4	0.1	0.1	0.4	✓	✓	✓
853	0	0.4	0	0.2	0.4	✓	✓	✓
854	0	0.3	0.3	0	0.4	✓	✓	✓
855	0	0.3	0.2	0.1	0.4	✓	✓	✓
856	0	0.3	0.1	0.2	0.4	✓	✓	✓
857	0	0.3	0	0.3	0.4	✓	✓	✓
858	0	0.2	0.4	0	0.4	✓	✓	✓
859	0	0.2	0.3	0.1	0.4	✓	✓	✓
860	0	0.2	0.2	0.2	0.4	✓	✓	✓
861	0	0.2	0.1	0.3	0.4	✓	✓	✓
862	0	0.2	0	0.4	0.4	✓	✓	✓
863	0	0.1	0.5	0	0.4	✓	✓	✓
864	0	0.1	0.4	0.1	0.4	✓	✓	✓
865	0	0.1	0.3	0.2	0.4	✓	✓	✓
866	0	0.1	0.2	0.3	0.4	✓	✓	✓
867	0	0.1	0.1	0.4	0.4	✓	✓	✓
868	0	0.1	0	0.5	0.4	✓	✓	✓
869	0	0	0.6	0	0.4	✓	✓	✓
870	0	0	0.5	0.1	0.4	✓	✓	✓
871	0	0	0.4	0.2	0.4	✓	✓	✓
872	0	0	0.3	0.3	0.4	✓	✓	✓
873	0	0	0.2	0.4	0.4	\checkmark	✓	✓
874	0	0	0.1	0.5	0.4	✓	✓	✓
875	0	0	0	0.6	0.4	✓	✓	✓
876	0.5	0	0	0	0.5	✓	✓	✓
877	0.4	0.1	0	0	0.5	✓	✓	✓
878	0.4	0	0.1	0	0.5	\checkmark	✓	✓
879	0.4	0	0	0.1	0.5	✓	✓	✓
880	0.3	0.2	0	0	0.5	✓	✓	✓
881	0.3	0.1	0.1	0	0.5	✓	✓	 ✓
882	0.3	0.1	0	0.1	0.5	✓	✓	✓
883	0.3	0	0.2	0	0.5	✓	✓	✓
								I

884	0.3	0	0.1	0.1	0.5	✓	✓	✓
885	0.3	0	0	0.2	0.5	✓	✓	✓
886	0.2	0.3	0	0	0.5	\checkmark	\checkmark	√
887	0.2	0.2	0.1	0	0.5	\checkmark	\checkmark	√
888	0.2	0.2	0	0.1	0.5	\checkmark	\checkmark	√
889	0.2	0.1	0.2	0	0.5	\checkmark	√	√
890	0.2	0.1	0.1	0.1	0.5	\checkmark	\checkmark	✓
891	0.2	0.1	0	0.2	0.5	√	√	√
892	0.2	0	0.3	0	0.5	✓	√	√
893	0.2	0	0.2	0.1	0.5	√	√	√
894	0.2	0	0.1	0.2	0.5	√	√	√
895	0.2	0	0	0.3	0.5	✓	√	√
896	0.1	0.4	0	0	0.5	√	√	√
897	0.1	0.3	0.1	0	0.5	✓	√	√
898	0.1	0.3	0	0.1	0.5	✓	√	√
899	0.1	0.2	0.2	0	0.5	√	√	√
900	0.1	0.2	0.1	0.1	0.5	✓	√	✓
901	0.1	0.2	0	0.2	0.5	✓	√	✓
902	0.1	0.1	0.3	0	0.5	✓	√	✓
903	0.1	0.1	0.2	0.1	0.5	✓	√	✓
904	0.1	0.1	0.1	0.2	0.5	✓	√	✓
905	0.1	0.1	0	0.3	0.5	✓	√	✓
906	0.1	0	0.4	0	0.5	✓	√	✓
907	0.1	0	0.3	0.1	0.5	✓	\checkmark	✓
908	0.1	0	0.2	0.2	0.5	✓	✓	✓
909	0.1	0	0.1	0.3	0.5	\checkmark	\checkmark	\checkmark
910	0.1	0	0	0.4	0.5	✓	✓	✓
911	0	0.5	0	0	0.5	✓	✓	✓
912	0	0.4	0.1	0	0.5	✓	✓	✓
913	0	0.4	0	0.1	0.5	✓	✓	✓
914	0	0.3	0.2	0	0.5	✓	✓	✓
915	0	0.3	0.1	0.1	0.5	✓	✓	✓
916	0	0.3	0	0.2	0.5	✓	✓	✓
917	0	0.2	0.3	0	0.5	√	√	✓
918	0	0.2	0.2	0.1	0.5	√	√	✓
919	0	0.2	0.1	0.2	0.5	√	√	✓
920	0	0.2	0	0.3	0.5	√	√	√
921	0	0.1	0.4	0	0.5	√	√	√
922	0	0.1	0.3	0.1	0.5	√	√	√
923	0	0.1	0.2	0.2	0.5	√	√	√
924	0	0.1	0.1	0.3	0.5	√	√	√
925	0	0.1	0	0.4	0.5	√	√	√
926	0	0	0.5	0	0.5	✓	✓	√
927	0	0	0.4	0.1	0.5	√	√	√
928	0	0	0.3	0.2	0.5	√	√	√
929	0	0	0.2	0.3	0.5	√	√	√
930	0	0	0.1	0.4	0.5	✓	✓	✓

931	0	0	0	0.5	0.5	✓	✓	✓
932	0.4	0	0	0	0.6	✓	✓	
933	0.3	0.1	0	0	0.6	✓	✓	
934	0.3	0	0.1	0	0.6	✓	✓	
935	0.3	0	0	0.1	0.6	✓	✓	
936	0.2	0.2	0	0	0.6	✓	✓	
937	0.2	0.1	0.1	0	0.6	✓	✓	
938	0.2	0.1	0	0.1	0.6	✓	✓	
939	0.2	0	0.2	0	0.6	✓	✓	
940	0.2	0	0.1	0.1	0.6	✓	✓	
941	0.2	0	0	0.2	0.6	✓	✓	
942	0.1	0.3	0	0	0.6	✓	✓	
943	0.1	0.2	0.1	0	0.6	✓	✓	
944	0.1	0.2	0	0.1	0.6	✓	✓	
945	0.1	0.1	0.2	0	0.6	✓	_ ✓	
946	0.1	0.1	0.1	0.1	0.6	\checkmark	✓	
947	0.1	0.1	0	0.2	0.6	✓	✓	
948	0.1	0	0.3	0	0.6	✓	✓	
949	0.1	0	0.2	0.1	0.6	✓	✓	
950	0.1	0	0.1	0.2	0.6	✓	✓	
951	0.1	0	0	0.3	0.6	✓	✓	
952	0	0.4	0	0	0.6	✓	✓	
953	0	0.3	0.1	0	0.6	✓	✓	
954	0	0.3	0	0.1	0.6	✓	✓	
955	0	0.2	0.2	0	0.6	✓	✓	
956	0	0.2	0.1	0.1	0.6	✓	✓	
957	0	0.2	0	0.2	0.6	✓	✓	
958	0	0.1	0.3	0	0.6	✓	✓	
959	0	0.1	0.2	0.1	0.6	✓	✓	
960	0	0.1	0.1	0.2	0.6	✓	✓	
961	0	0.1	0	0.3	0.6	✓	✓	
962	0	0	0.4	0	0.6	✓	✓	
963	0	0	0.3	0.1	0.6	✓	✓	
964	0	0	0.2	0.2	0.6	✓	✓	
965	0	0	0.1	0.3	0.6	√	√	
966	0	0	0	0.4	0.6	√	√	
967	0.3	0	0	0	0.7	√	√	
968	0.2	0.1	0	0	0.7	√	√	
969	0.2	0	0.1	0	0.7	√	√	
970	0.2	0	0	0.1	0.7	√	√	
971	0.1	0.2	0	0	0.7	√	√	
972	0.1	0.1	0.1	0	0.7	√	√	
973	0.1	0.1	0	0.1	0.7	✓	√	
974	0.1	0	0.2	0	0.7	√	√	
975	0.1	0	0.1	0.1	0.7	√	√	
976	0.1	0	0	0.2	0.7	√	√	
977	0	0.3	0	0	0.7	✓	 ✓ 	

978	0	0.2	0.1	0	0.7	✓	 ✓ 	
979	0	0.2	0	0.1	0.7	\checkmark	✓	
980	0	0.1	0.2	0	0.7	~	 ✓ 	
981	0	0.1	0.1	0.1	0.7	~	 ✓ 	
982	0	0.1	0	0.2	0.7	~	 ✓ 	
983	0	0	0.3	0	0.7	~	 ✓ 	
984	0	0	0.2	0.1	0.7	~	 ✓ 	
985	0	0	0.1	0.2	0.7	✓	 ✓ 	
986	0	0	0	0.3	0.7	~	 ✓ 	
987	0.2	0	0	0	0.8	~	 ✓ 	
988	0.1	0.1	0	0	0.8	~	 ✓ 	
989	0.1	0	0.1	0	0.8	~	 ✓ 	
990	0.1	0	0	0.1	0.8	~	 ✓ 	
991	0	0.2	0	0	0.8	~	 ✓ 	
992	0	0.1	0.1	0	0.8	~	 ✓ 	
993	0	0.1	0	0.1	0.8	~	 ✓ 	
994	0	0	0.2	0	0.8	~	 ✓ 	
995	0	0	0.1	0.1	0.8	~	 ✓ 	
996	0	0	0	0.2	0.8	~	 ✓ 	
997	0.1	0	0	0	0.9	~		
998	0	0.1	0	0	0.9	✓		
999	0	0	0.1	0	0.9	~		
1000	0	0	0	0.1	0.9	~		
1001	0	0	0	0	1			

Figure S1. Normalized determinant vs. the number of experiments for D-Optimal Design application on candidate points matrix in Table S1, assuming model equation reported in Equation 1.

Sample	Formula	Cr	Mn	Fe	Co	Μ	% Perovskite
P1	LaCrO ₃	1	0	0	0	0	100%
P2	La(CrMn) _{0.5} O ₃	0.5	0.5	0	0	0	100%
P3	La(CrFe) _{0.5} O ₃	0.5	0	0.5	0	0	100%
P4	La(CrCo) _{0.5} O ₃	0.5	0	0	0.5	0	100%
P5	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	100%
P6	LaMn _{0.4} (CrFe) _{0.3} O ₃	0.3	0.4	0.3	0	0	100%
P7	LaMn _{0.4} (CrCo) _{0.3} O ₃	0.3	0.4	0	0.3	0	100%
P8	LaMnO3	0	1	0	0	0	100%
Р9	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	100%
P10	La(MnFe) _{0.5} O ₃	0	0.5	0	0.5	0	100%
P11	LaMn _{0.4} (FeCo) _{0.3} O ₃	0	0.4	0.3	0.3	0	100%
P12	LaFeO3	0	0	1	0	0	100%
P13	La(FeCo) _{0.5} O ₃	0	0	0.5	0.5	0	100%
P14	LaCoO3	0	0	0	1	0	100%
PN1/PZ1	LaMn _{0.4} (CrNi) _{0.3} O ₃ /LaMn _{0.4} (CrZn) _{0.3} O ₃	0.3	0.4	0	0	0.3	100%
PN2/PZ2	LaCo _{0.4} (CrNi) _{0.3} O ₃ /LaCo _{0.4} (CrZn) _{0.3} O ₃	0.3	0	0	0.4	0.3	100% /94.13%
PN3/PZ3	LaCo _{0.4} (MnNi) _{0.3} O ₃ /LaCo _{0.4} (MnZn) _{0.3} O ₃	0	0.3	0	0.4	0.3	100%/95.04%
PN4/PZ4	$LaFe_{0.4}(CoNi)_{0.3}O_3/LaFe_{0.4}(CoZn)_{0.3}O_3$	0	0	0.4	0.3	0.3	100%/83.04%
PN5/PZ5	LaNi _{0.4} (CrFe) _{0.3} O ₃ /LaNi _{0.4} (CrFe) _{0.3} O ₃	0.3	0	0.3	0	0.4	100%/85.26%
PN6/PZ6	LaNi _{0.4} (CrCo) _{0.3} O ₃ /LaZn _{0.4} (CrCo) _{0.3} O ₃	0.3	0	0	0.3	0.4	100%/80.62%

Table S2. 26-experiments *training set* extracted by D-Optimal Design from the complete cp in Table S1, assuming model equation reported in Equation 1.

PN7/PZ7	LaNi _{0.4} (MnFe) _{0.3} O ₃ /LaZn _{0.4} (MnFe) _{0.3} O ₃	0	0.3	0.3	0	0.4	100%/90.89%
PN8/PZ8	La(CrNi) _{0.5} O ₃ /La(CrZn) _{0.5} O ₃	0.5	0	0	0	0.5	100%/78.12%
PN9/PZ9	$La(MnNi)_{0.5}O_3/La(MnZn)_{0.5}O_3$	0	0.5	0	0	0.5	100%
PN10/PZ10	La(FeNi) _{0.5} O ₃ /La(FeZn) _{0.5} O ₃	0	0	0.5	0	0.5	100%/70.10%
PN11/PZ11	La(CoNi) _{0.5} O ₃ /La(CoZn) _{0.5} O ₃	0	0	0	0.5	0.5	100%/39.68%
PN12/PZ12	LaNiO ₃ /LaZnO ₃	0	0	0	0	1	0%

Table S3. 35-experiments expanded *training set* for Ni-containing perovskites obtained by adding further experiments to the *training set* in Table S2 extracted from the reduced cps (Stability domain estimation Table S1, seventh and eighth columns) by D-Optimal Design by Addition.

Sample	Formula	Cr	Mn	Fe	Co	Ni	% Perovskite	Ср
P1	LaCrO ₃	1	0	0	0	0	100%	Complete
P2	$La(CrMn)_{0.5}O_3$	0.5	0.5	0	0	0	100%	Complete
P3	La(CrFe) _{0.5} O ₃	0.5	0	0.5	0	0	100%	Complete
P4	La(CrCo) _{0.5} O ₃	0.5	0	0	0.5	0	100%	Complete
P5	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	100%	Complete
P6	LaMn _{0.4} (CrFe) _{0.3} O ₃	0.3	0.4	0.3	0	0	100%	Complete
P7	LaMn _{0.4} (CrCo) _{0.3} O ₃	0.3	0.4	0	0.3	0	100%	Complete
P8	LaMnO3	0	1	0	0	0	100%	Complete
P9	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	100%	Complete
P10	La(MnFe) _{0.5} O ₃	0	0.5	0	0.5	0	100%	Complete
P11	LaMn _{0.4} (FeCo) _{0.3} O ₃	0	0.4	0.3	0.3	0	100%	Complete
P12	LaFeO3	0	0	1	0	0	100%	Complete
P13	La(FeCo) _{0.5} O ₃	0	0	0.5	0.5	0	100%	Complete
P14	LaCoO3	0	0	0	1	0	100%	Complete
PN1	LaMn _{0.4} (CrNi) _{0.3} O ₃	0.3	0.4	0	0	0.3	100%	Complete
PN2	LaCo _{0.4} (CrNi) _{0.3} O ₃	0.3	0	0	0.4	0.3	100%	Complete
PN3	LaCo _{0.4} (MnNi) _{0.3} O ₃	0	0.3	0	0.4	0.3	100%	Complete
PN4	LaFe _{0.4} (CoNi) _{0.3} O ₃	0	0	0.4	0.3	0.3	100%	Complete
PN5	LaNi _{0.4} (CrFe) _{0.3} O ₃	0.3	0	0.3	0	0.4	100%	Complete
PN6	LaNi _{0.4} (CrCo) _{0.3} O ₃	0.3	0	0	0.3	0.4	100%	Complete
PN7	LaNi _{0.4} (MnFe) _{0.3} O ₃	0	0.3	0.3	0	0.4	100%	Complete
PN8	La(CrNi) _{0.5} O ₃	0.5	0	0	0	0.5	100%	Complete
PN9	La(MnNi) _{0.5} O ₃	0	0.5	0	0	0.5	100%	Complete
PN10	La(FeNi) _{0.5} O ₃	0	0	0.5	0	0.5	100%	Complete
PN11	La(CoNi) _{0.5} O ₃	0	0	0	0.5	0.5	100%	Complete
PN12	$La_4Ni_3O_{10}$	0	0	0	0	1	0%	Complete

PN13	LaMn0.1Ni0.9O3	0	0.1	0	0	0.9	90.58%	Ni≤0.9
PN14	LaFe0.1Ni0.9O3	0	0	0.1	0	0.9	90.31%	Ni≤0.9
PN15	LaFe0.4Co0.1Ni0.5O3	0	0	0.4	0.1	0.5	100%	Ni≤0.8
PN16	LaFe0.1Co0.4Ni0.5O4	0	0	0.1	0.4	0.5	100%	Ni≤0.8
PN17	La(CrMn)0.1Co0.2Ni0.6O3	0.1	0.1	0	0.2	0.6	100%	Ni≤0.8
PN18	LaFe0.1Co0.3Ni0.6O3	0	0	0.1	0.3	0.6	100%	Ni≤0.8
PN19	La(FeCo)0.2Ni0.6O3	0	0	0.2	0.2	0.6	100%	Ni≤0.8
PN20	LaMn0.2Co0.1Ni0.7O3	0	0.2	0	0.1	0.7	100%	Ni≤0.8
PN21	LaCr0.2Ni0.8O3	0.2	0	0	0	0.8	100%	Ni≤0.8

Table S4. 45-experiments expanded *training set* for Zn-containing perovskites obtained by adding further experiments to the *training set* in Table S2 extracted from the reduced cps (Stability domain estimation Table S1, last column) by D-Optimal Design by Addition.

Sample	Formula	Cr	Mn	Fe	Co	Zn	% Perovskite	Ср
P1	LaCrO ₃	1	0	0	0	0	100%	Complete
P2	La(CrMn) _{0.5} O ₃	0.5	0.5	0	0	0	100%	Complete
P3	$La(CrFe)_{0.5}O_3$	0.5	0	0.5	0	0	100%	Complete
P4	La(CrCo) _{0.5} O ₃	0.5	0	0	0.5	0	100%	Complete
P5	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	100%	Complete
P6	LaMn _{0.4} (CrFe) _{0.3} O ₃	0.3	0.4	0.3	0	0	100%	Complete
P7	LaMn _{0.4} (CrCo) _{0.3} O ₃	0.3	0.4	0	0.3	0	100%	Complete
P8	LaMnO3	0	1	0	0	0	100%	Complete
P9	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	100%	Complete
P10	La(MnFe) _{0.5} O ₃	0	0.5	0	0.5	0	100%	Complete
P11	LaMn _{0.4} (FeCo) _{0.3} O ₃	0	0.4	0.3	0.3	0	100%	Complete
P12	LaFeO3	0	0	1	0	0	100%	Complete
P13	La(FeCo) _{0.5} O ₃	0	0	0.5	0.5	0	100%	Complete
P14	LaCoO3	0	0	0	1	0	100%	Complete
PZ1	LaMn _{0.4} (CrZn) _{0.3} O ₃	0.3	0.4	0	0	0.3	100%	Complete
PZ2	LaCo _{0.4} (CrZn) _{0.3} O ₃	0.3	0	0	0.4	0.3	94.13%	Complete
PZ3	LaCo _{0.4} (MnZn) _{0.3} O ₃	0	0.3	0	0.4	0.3	95.04%	Complete
PZ4	LaFe _{0.4} (CoZn) _{0.3} O ₃	0	0	0.4	0.3	0.3	83.04%	Complete
PZ5	LaNi _{0.4} (CrFe) _{0.3} O ₃	0.3	0	0.3	0	0.4	85.26%	Complete
PZ6	LaZn _{0.4} (CrCo) _{0.3} O ₃	0.3	0	0	0.3	0.4	80.62%	Complete
PZ7	LaZn _{0.4} (MnFe) _{0.3} O ₃	0	0.3	0.3	0	0.4	90.89%	Complete
PZ8	La(CrZn) _{0.5} O ₃	0.5	0	0	0	0.5	78.12%	Complete
PZ9	La(MnZn) _{0.5} O ₃	0	0.5	0	0	0.5	100%	Complete
PZ10	La(FeZn) _{0.5} O ₃	0	0	0.5	0	0.5	70.10%	Complete

PZ11	La(CoZn) _{0.5} O ₃	0	0	0	0.5	0.5	39.68%	Complete
PZ12	LaZnO ₃	0	0	0	0	1	0%	Complete
P15	LaMn _{0.6} Co _{0.4} O ₃	0	0.6	0	0.4	0	100%	Zn≤0.5
P16	LaMn _{0.1} Fe _{0.9} O ₃	0	0.1	0.9	0	0	100%	Zn≤0.5
P17	LaMn _{0.1} Fe _{0.4} Co _{0.5} O ₃	0	0.1	0.4	0.5	0	100%	Zn≤0.5
P18	LaMn _{0.1} Co _{0.9} O ₃	0	0.1	0	0.9	0	100%	Zn≤0.5
PZ13	LaCr _{0.3} Mn _{0.5} Zn _{0.2} O ₃	0.3	0.5	0	0	0.2	100%	Zn≤0.5
PZ14	LaCr _{0.3} Fe _{0.4} Co _{0.1} Zn _{0.2} O ₃	0.3	0	0.4	0.1	0.2	100%	Zn≤0.5
PZ15	LaMn _{0.7} Fe _{0.1} Zn _{0.2} O ₃	0	0.7	0.1	0	0.2	100%	Zn≤0.5
PZ16	LaCr _{0.7} Zn _{0.3} O ₃	0.7	0	0	0	0.3	100%	Zn≤0.5
PZ17	LaCr _{0.4} (FeZn) _{0.3} O ₃	0.4	0	0.3	0	0.3	100%	Zn≤0.5
PZ18	$La(CrMn)_{0.3}Fe_{0.1}Zn_{0.3}O_3$	0.3	0.3	0.1	0	0.3	100%	Zn≤0.5
PZ19	$La(CrFe)_{0.1}Co_{0.5}Zn_{0.3}O_3$	0.1	0	0.1	0.5	0.3	83.76%	Zn≤0.5
PZ20	$LaMn_{0.1}Fe_{0.6}Zn_{0.3}O_3$	0	0.1	0.6	0	0.3	79.22%	Zn≤0.5
PZ21	LaMn _{0.4} (CoZn) _{0.3} O ₃	0	0.4	0	0.3	0.3	100%	Zn≤0.5
PZ22	$LaMn_{0.1}Fe_{0.2}Co_{0.4}Zn_{0.3}O_3$	0	0.1	0.2	0.4	0.3	92.6%	Zn≤0.5
PZ23	LaMn _{0.1} Co _{0.6} Zn _{0.3} O ₃	0	0.1	0	0.6	0.3	83.19%	Zn≤0.5
PZ24	LaCr _{0.3} Mn _{0.2} Co _{0.1} Zn _{0.3} O ₃	0.3	0.2	0	0.1	0.4	100%	Zn≤0.5
PZ25	LaMn _{0.5} Co _{0.1} Zn _{0.4} O ₃	0	0.5	0	0.1	0.4	100%	Zn≤0.5
PZ26	$LaCr_{0.1}Fe_{0.4}Zn_{0.5}O_3$	0.1	0	0.4	0	0.5	60.77%	Zn≤0.5
PZ27	LaMn _{0.1} Co _{0.4} Zn _{0.5} O ₃	0	0.1	0	0.4	0.5	58.68%	Zn≤0.5

Coefficient	Calculated value	Standard deviation	Confidence Interval	p-value	Significance
Cr	101.4	4.6	9.5	0.000	***
Mn	97.7	4.4	9.3	0.000	***
Fe	99.7	3.8	8.0	0.000	***
Со	101.0	3.8	7.9	0.000	***
Zn	-0.3	4.6	9.6	0.950	
Cr*Mn	-4.5	22.2	46.3	0.840	
Cr*Fe	1.2	22.1	46.0	0.958	
Cr*Co	-5.0	22.0	45.8	0.823	
Cr*Zn	123.5	20.2	42.1	0.000	***
Mn*Fe	0.1	22.8	47.5	0.997	
Mn*Co	1.4	18.8	39.1	0.943	
Mn*Zn	187.5	20.9	43.5	0.000	***
Fe*Co	-4.0	19.8	41.4	0.844	
Fe*Zn	50.8	19.5	40.7	0.017	*
Co*Zn	-31.8	19.5	40.7	0.118	
Cr*Mn*Fe	34.5	159.1	331.9	0.831	
Cr*Mn*Co	51.0	155.7	324.7	0.746	
Cr*Mn*Zn	-40.4	118.7	247.5	0.737	
Cr*Fe*Co	7.5	157.0	327.5	0.962	
Cr*Fe*Zn	138.7	120.4	251.1	0.263	
Cr*Co*Zn	393.2	123.4	257.5	0.005	**
Mn*Fe*Co	45.2	151.2	315.5	0.768	
Mn*Fe*Zn	-11.5	146.2	305.0	0.938	
Mn*Co*Zn	366.6	124.2	259.2	0.008	**
Fe*Co*Zn	376.7	129.4	270.0	0.009	**

Table S5. Numerical value calculated for each coefficient in the model equation referring to Zn solubility in the perovskite system, together with its standard deviation, confidence interval, p-value and significance.

Figure S2. a) Coefficients plot for Zn solubility, confidence interval estimated using standard deviations from residuals and significance (***: 99.9 %, *: 99 %, *: 95 % confidence level); b) Experimental (x) vs. fitted (y) values for Zn solubility in the perovskite system.

Sample	Formula	Cr	Mn	Fe	Co	Zn	% Perovskite
P19	La(CrMnFeCo) _{0.25} O ₃	0.25	0.25	0.25	0.25	0	100%
PZ26	La(CrMnFeCoZn) _{0.2} O ₃	0.2	0.2	0.2	0.2	0.2	100%
PZ27	La(CrMnFeZn) _{0.25} O ₃	0.25	0.25	0.25	0	0.25	100%
PZ28	La(CrMnCoZn) _{0.25} O ₃	0.25	0.25	0	0.25	0.25	100%
PZ29	La(CrFeCoZn) _{0.25} O ₃	0.25	0	0.25	0.25	0.25	100%
PZ30	La(MnFeCoZn) _{0.25} O ₃	0	0.25	0.25	0.25	0.25	100%

Table S6. Validation samples for modelling Zn solubility in perovskite system

Table S7. Numerical value calculated for each coefficient in the model equation referring to Ni-containing perovskites crystal system, together with its standard deviation, confidence interval, p-value and significance.

Coefficient	Calculated value	Standard deviation	Confidence Interval	p-value	Significance
Cr	1.0	0.2	0.4	0.000	***
Mn	1.0	0.2	0.4	0.000	***
Fe	1.0	0.2	0.3	0.000	***
Со	-0.1	0.2	0.3	0.432	
Ni	-1.2	0.3	0.6	0.001	***
Cr*Mn	-0.1	0.9	1.9	0.951	
Cr*Fe	0.0	0.9	1.9	0.968	
Cr*Co	-1.8	0.7	1.5	0.025	*
Cr*Ni	4.5	1.2	2.6	0.001	**
Mn*Fe	-0.1	0.7	1.4	0.942	
Mn*Co	1.9	0.7	1.5	0.015	*
Mn*Ni	4.5	1.1	2.2	0.000	***
Fe*Co	-2.0	0.8	1.7	0.025	*
Fe*Ni	3.0	1.0	2.0	0.006	**
Co*Ni	2.4	1.0	2.1	0.028	*
Cr*Mn*Fe	0.2	6.5	13.4	0.978	
Cr*Mn*Co	7.9	6.3	13.1	0.221	
Cr*Mn*Ni	-7.6	5.4	11.2	0.174	
Cr*Fe*Co	20.1	4.8	9.9	0.000	
Cr*Fe*Ni	-0.9	6.8	14.1	0.895	
Cr*Co*Ni	-10.6	5.3	11.0	0.059	
Mn*Fe*Co	4.2	6.0	12.3	0.489	
Mn*Fe*Ni	-1.0	6.6	13.6	0.875	
Mn*Co*Ni	-20.0	6.0	12.4	0.003	**
Fe*Co*Ni	3.8	5.9	12.3	0.533	

Figure S3. a) Coefficients plot for Ni-containing perovskites crystal system, confidence interval estimated using standard deviations from residuals and significance (***: 99.9 %, **: 99 %, *: 95 % confidence level); experimental (columns) vs. fitted (rows) values Ni-containing perovskites crystal system for the training (b) and validation (c) samples.

Table S8. Numerical value calculated for each coefficient in the model equation referring to oxygen nonstoichiometry for Ni-containing perovskites, together with its standard deviation, confidence interval, p-value and significance.

Coefficient	Calculated value	Standard deviation	Confidence Interval	p-value	Significance
Cr	0.003	0.005	0.010	0.591	
Mn	0.008	0.005	0.010	0.121	
Fe	0.004	0.004	0.008	0.364	
Со	-0.001	0.004	0.008	0.851	
Ni	-0.006	0.008	0.016	0.453	
Cr*Mn	0.003	0.024	0.049	0.912	
Cr*Fe	-0.005	0.023	0.048	0.842	
Cr*Co	0.103	0.019	0.039	0.000	***
Cr*Ni	0.024	0.031	0.065	0.457	
Mn*Fe	0.056	0.018	0.036	0.004	**
Mn*Co	0.041	0.018	0.038	0.036	*
Mn*Zn	0.009	0.028	0.057	0.741	
Fe*Co	0.073	0.021	0.043	0.002	**
Fe*Ni	0.055	0.025	0.052	0.037	*
Co*Ni	0.062	0.026	0.053	0.024	*
Cr*Mn*Fe	-0.019	0.165	0.340	0.910	
Cr*Mn*Co	-0.446	0.160	0.332	0.011	*
Cr*Mn*Ni	-0.026	0.138	0.285	0.849	
Cr*Fe*Co	-0.425	0.122	0.252	0.002	**
Cr*Fe*Ni	-0.101	0.173	0.358	0.565	
Cr*Co*Ni	-0.387	0.135	0.280	0.009	**
Mn*Fe*Co	-0.618	0.151	0.313	0.001	***
Mn*Fe*Ni	-0.304	0.166	0.344	0.081	
Mn*Co*Ni	0.090	0.153	0.315	0.560	
Fe*Co*Ni	-0.377	0.151	0.312	0.020	*

Figure S4. a) Coefficients plot for oxygen non-stoichiometry for Ni-containing perovskites, confidence interval estimated using standard deviations from residuals and significance (***: 99.9 %, **: 99 %, *: 95 % confidence level); b) Experimental (x) vs. fitted (y) values for oxygen non-stoichiometry for Ni-containing perovskites.

Table S9. Numerical value calculated for each coefficient in the model equation referring to oxygen nonstoichiometry for Zn-containing perovskites, together with its standard deviation, confidence interval, p-value and significance.

Coefficient	Calculated value	Standard deviation	Confidence Interval	p-value	Significance
Cr	0.003	0.005	0.012	0.590	
Mn	0.008	0.005	0.012	0.162	
Fe	0.003	0.005	0.010	0.484	
Со	-0.001	0.004	0.009	0.833	
Zn	-0.309	0.251	0.536	0.238	
Cr*Mn	0.002	0.027	0.057	0.937	
Cr*Fe	-0.004	0.026	0.055	0.868	
Cr*Co	0.104	0.021	0.044	0.000	***
Cr*Zn	0.612	0.361	0.769	0.110	
Mn*Fe	0.057	0.020	0.042	0.010	*
Mn*Co	0.041	0.020	0.043	0.060	
Mn*Zn	0.649	0.504	1.074	0.217	
Fe*Co	0.068	0.023	0.049	0.010	*
Fe*Zn	-2.299	3.673	7.829	0.541	
Co*Zn	2.954	0.964	2.055	0.008	**
Cr*Mn*Fe	-0.021	0.183	0.391	0.911	
Cr*Mn*Co	-0.455	0.180	0.383	0.023	*
Cr*Mn*Zn	-0.937	0.591	1.260	0.134	
Cr*Fe*Co	-0.415	0.136	0.290	0.008	**
Cr*Fe*Zn	7.984	10.004	21.323	0.437	
Cr*Co*Zn	-4.137	1.320	2.813	0.007	**
Mn*Fe*Co	-0.595	0.169	0.359	0.003	**
Mn*Fe*Zn	0.922	3.870	8.250	0.815	

Mn*Co*Zn	-5.459	2.059	4.388	0.018	*
Fe*Co*Zn	-0.922	7.514	16.015	0.904	

Figure S5. a) Coefficients plot for oxygen non-stoichiometry for Zn-containing perovskites, confidence interval estimated using standard deviations from residuals and significance (***: 99.9 %, **: 99 %, *: 95 % confidence level); b) Experimental (x) vs. fitted (y) values for oxygen non-stoichiometry for Zn-containing perovskites.

Figure S6. Comparison between δ values predicted for La(CrMnFeCo)O₃ perovskites using polynomial model based on La(CrMnFeCoNi)O₃ (x) and La(CrMnFeCoZn)O₃ (y) systems.

Experimental Conditions

Sample Synthesis

All samples were synthesized by a sol-gel method. The precursors were purchased from Sigma-Aldrich: $La(NO_3)_3*6H_2O$ (99.999%), $Cr(NO_3)_3*9H_2O$ (99.99%), $Mn(NO_3)_2*4H_2O$ (99.99%), $Fe(NO_3)_3*9H_2O$ (99.95%), $Co(NO_3)_2*6H_2O$ (99.999%), $Ni(NO_3)_2*6H_2O$ (99.999%), $Zn(NO_3)_2$ (\geq 99.0%), citric acid anhydrous (\geq 99.5%) and ethylene glycol anhydrous (\geq 99%). The stoichiometric amount of nitrate salts of the cations was weighed and dissolved in a 50 mL aqueous solution. An equivalent quantity of 1:2.5 citric acid and 1:1 ethylene glycol was added to the solution. The solution was stirred at 130°C until gelling. The gel was treated in an oven at 230°C for 2 hours to completely remove the nitrates. The collected powder was calcined in a muffle furnace at 750°C for 6h. Finally, the collected powder was pelleted and sintered on a platinum crucible in an oven at 1100°C for 12h.

Characterization

The crystal structure of the samples has been characterized by room temperature Cu-K and Mo-K radiation XRD acquired with Bruker D2 and D8 Advances diffractometers. Diffraction experiments were carried out in flat-plate mode by using null-background sample holders. Crystal structure information was obtained through the Rietveld method performed using fullprof software.

X-ray fluorescence (XRF) analysis was performed using the AXIOS spectrometer (Panalytical) equipped with an Rh-anode X-ray tube with maximum power of 2.4 kW. The wavelength dispersive system of the spectrometer used five crystals (LiF (2 0 0), Ge (1 1 1), PE (0 0 2), PX1 and LiF (2 2 0)), which were automatically selected during the measurements. The characteristic X-rays induced in the sample were diffracted on one of the crystals and measured by a scintillation detector. The measurements were performed in helium. The quantitative analysis of the spectra was performed with the PANalytical analytical program Omnian. The Omnian package is available for the standardless analysis of all types of samples. Omnian includes advanced algorithms designed to profile known limitations inherent to XRF and includes spectral interference. Experimental stoichiometries were found to be in very good agreement (within the e.s.d.) with the nominal ones which have been therefore used throughout the paper.

The non-stoichiometry of the samples was obtained by thermogravimetric analysis using the formula (1).

$$\delta = \frac{\Delta_{\%m} * PM_{PVK}}{PM_{02} * 3 * 100} \tag{1}$$

Where δ is the non-stoichiometry, $\Delta_{\%m}$ is the percentage of mass loss, PM_{PVK} is the molecular weight of the perovskite and PM_{02} is the molecular weight of the Oxygen.

The instrument used for thermogravimetric analysis is the NETZSCH STA Jupiter F1 thermo-heated scale and related Proteus software for data collection and analysis. The head mounts a type P thermocouple with

composition 55% Pd / 31% Pt / 14% Au – 65% Au / 35% Pd by weight, works between -150 ° C and 1000 °C and supports alumina crucibles. The mass of the alumina samples and crucibles was determined by measuring on an external balance. The gases used are Argon (Purge 1), Air (Purge 2) and N₂ (protective constant at 20ml / min). Before each analysis, 3 vacuum-Argon cycles are carried out for the conditioning of the environment. In all analyzes the heating rate is 40K / min. All chemicals and gases were purchased and used as received: Nitrogen 6.0, Argon 5.5 (<97%), Air.

DOE-based estimation of stability domain for Ni and Zn-containing perovskites

Training samples definition and model postulation

y

Defining the stability domain of monophasic perovskite phase, is mandatory to limit the other characterisations, such as perovskite crystal system and oxygen non-stoichiometry, to only monophasic samples. A rational estimation of the stability domain can be conducted by Design of Experiment tools, used both to select a representative set of training samples to be characterised and, in the following sections, to model and optimise the properties of interest. All the calculations are performed using the software CAT [1].

To define training samples, firstly, the entire perovskites' domain, in which each cation is varied from 0 to 1, is homogeneously mapped computing a list of all the possible combinations of the five cations' molar fractions, using a minimum step of 0.1. This list is generally referred to as "candidate point matrix" and in our case includes 1001 possible compositions for La(CrMnFeCoM)O₃, whereas M stands for Ni or Zn, listed in Table S1. Then, a polynomial equation suitable to approximate the actual trend of the properties of interest within the experimental domain is hypothesised. According to preliminary experiments and knowledge, linear terms, 2-cations and 3-cations interactions are included in the polynomial equation leading to the model equation reported in Equation 1.

 $= b_{Cr}x_{Cr} + b_{Mn}x_{Mn} + b_{Fe}x_{Fe} + b_{Co}x_{Co} + b_{M}x_{M} + b_{CrMn}x_{Cr}x_{Mn} + b_{CrFe}x_{Cr}x_{Fe} + b_{CrCo}x_{Cr}x_{Fe} + b_{MnCo}x_{Mn}x_{Co} + b_{MnM}x_{Mn}x_{M} + b_{FeCo}x_{Fe}x_{Co} + b_{FeM}x_{Fe}x_{M} + b_{CoM}x_{Co}x_{M} + b_{Cr} + b_{CrMnCo}x_{Cr}x_{Mn}x_{Co} + b_{CrMnM}x_{Cr}x_{Mn}x_{M} + b_{CrFeCo}x_{Cr}x_{Fe}x_{Co} + b_{CrFeM}x_{Cr}x_{Fe}x_{M} + b_{Cr} + b_{MnFeCo}x_{Mn}x_{Fe}x_{Co} + b_{MnFeM}x_{Mn}x_{Fe}x_{M} + b_{MnCoM}x_{Mn}x_{Co}x_{M} + b_{FeCoM}x_{Fe}x_{Co}x_{M} + b_{FeCO}x_{Fe}x_{Co} + b_{FeCOM}x_{Fe}x_{Co}x_{M} + b_{FeCO}x_{Fe}x_{M} + b_{FeCO}x_{Mn}x_{Mn}x_{Fe}x_{M} + b_{MnCoM}x_{Mn}x_$

Equation 1. General model equation for in the case of La(Cr,Mn,Fe,Co,M)O₃ whereas M stands for Ni or Zn.

Once defined both the candidate point matrix (Table S1) and hypothesised model equation (Equation 1), D-Optimal Design allows to extract the most informative set of training samples (*training set*) from the candidate point lists per each number of experiments to be performed. Analysing the normalized determinant vs. number of samples (Figure S1), the set of 26 training experiments reported in Table S2 is selected as the best compromise between information acquired and experimental effort.[2-3] In Table S2 and in all the following ones, samples labelled as Pn do not include Ni or Zn, PNn samples contain Ni while PZn samples contain Zn. Each sample described in Table S2 is synthesized according to the procedure in Experimental Conditions and the percentage of perovskite phase, reported in the last column of Table S2, is quantified as described in according by Rietveld refinement of the diffraction pattern for each sample.

Stability domain estimation for Ni-containing perovskites

In the case of La(CrMnFeCoNi)O₃, simply analysing the percentage of perovskite, we can observe that LaNiO₃ is the only sample not presenting a perovskite thus the maximum amount of Ni is stepwise reduced till only monophasic materials are obtained. Per each maximum amount tested, the *training set* is expanded by adding further samples with Ni content around the specific limit.

These new samples are calculated applying a specific modification of D-Optimal Design, usually referred to as D-Optimal Design by Addition, [3] that extracts from the updated candidate point list, in our case the list including only samples with Ni equal or below the defined maximum amount in the perovskite (Table S1, seventh and eight columns), the best set of experiments to be added to the already synthesised and characterized *training set* (Table S2). The stepwise expanded *training set* is reported in Table S3 (35 samples).

Zn solubility modelling by Design of Experiments

Differently from the previous case, Zn turns out to be much less soluble than Ni in the perovskite structure since several Zn-containing samples in Table S2 are not monophasic. Therefore, the stepwise estimation is not feasible in this case while Design of Experiments can be applied to model and predict Zn solubility in the perovskite structure or, in other words, the stability domain of monophasic Zn-containing perovskites, according to the general model in Equation 1.

To better evaluate stability domain, the *training set* is expanded by adding further samples with Zn content around 0.5, that seems to be a reasonable upper limit for this cation. These new samples are extracted from the updated candidate point list, containing only compositions with Zn equal or below 0.5 (Table S1, last column) using D-Optimal Design by Addition; the final expanded *training set* is reported in Table S4. The experimental percentage of perovskite phase is then used to calculate the coefficients in Equation 1 by MLR, the coefficients significance is computed relying on standard deviation of fitting residuals and the percentage of perovskite phase is finally predicted in the entire experimental domain to visualise the stability region. Ternary plots have been drawn using Origin(Pro), Version 2018, by OriginLab Corporation, Northampton, MA, USA. The model is finally validated by statistically comparing the experimental percentage of perovskite phase with the predicted one for the samples in the *validation set* (Table S5), composed by the equimolar 5-cations perovskite and the five equimolar 4-cations perovskites obtained excluding one of the cations at the time. The comparison relies on an F-test between Root Mean Square Error in Prediction (RMSEP) and fitting residuals' standard deviation (*s*). [3]

Monophasic training and validation samples synthesis and characterization

Once estimated the stability domain for both Ni and Zn-containing perovskites, the lists of monophasic materials to be characterised is obtained by excluding non-monophasic samples from the expanded *training*

set in Table S3 and S4. Since the added samples for Zn-containing perovskites (Table S4) also include some materials containing neither Ni nor Zn, namely samples P15-P18, these samples have been included also in *monophasic training set* for Ni-containing perovskites.

Ni-containing monophasic perovskites

As for Ni-containing perovskites, the ultimate list of *monophasic training samples* is reported in Table S10, together with the experimental values for the physico-chemical properties of interest. It must be underlined that the perovskites showing the most interesting properties are synthesised and characterised in replicate to increase the model robustness and estimate the experimental variability associated with the different characterisation procedures.

cluding 12 replic	cates)							
Sample	Formula	Cr	Mn	Fe	Co	Ni	Crystal System	δ
P1	LaCrO ₃	1	0	0	0	0	Orthorhombic	0.003
			1	1	1			1

Table S10: Monophasic training samples for modelling La(Cr,Mn,Fe,Co,Ni)O₃ system (48 experiments

sampio	1 01 111414	<u> </u>	1.111		00	- 14	er jour sjourn	v
P1	LaCrO ₃	1	0	0	0	0	Orthorhombic	0.003
P2	La(CrMn) _{0.5} O ₃	0.5	0.5	0	0	0	Orthorhombic	0.006
P3	$La(CrFe)_{0.5}O_3$	0.5	0	0.5	0	0	Orthorhombic	0.002
P4a	La(CrCo) _{0.5} O ₃	0.5	0	0	0.5	0	Trigonal	0.027
P4b	La(CrCo) _{0.5} O ₃	0.5	0	0	0.5	0	Trigonal	0.027
P5a	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	Orthorhombic	0.005
P5b	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	Orthorhombic	0.008
P5c	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	Orthorhombic	0.002
P6	LaMn _{0.4} (CrFe) _{0.3} O ₃	0.3	0.4	0.3	0	0	Orthorhombic	0.011
P7	LaMn _{0.4} (CrCo) _{0.3} O ₃	0.3	0.4	0	0.3	0	Orthorhombic	0.002
P8	LaMnO3	0	1	0	0	0	Orthorhombic	0.006
P9a	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	Orthorhombic	0.021
P9b	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	Orthorhombic	0.018
P9c	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	Orthorhombic	0.020
P10	La(MnFe) _{0.5} O ₃	0	0.5	0	0.5	0	Orthorhombic	0.003
P11	LaMn _{0.4} (FeCo) _{0.3} O ₃	0	0.4	0.3	0.3	0	Orthorhombic	0.003
P12	LaFeO3	0	0	1	0	0	Orthorhombic	0.003
P13	La(FeCo) _{0.5} O ₃	0	0	0.5	0.5	0	Trigonal	0.021
P14	LaCoO3	0	0	0	1	0	Trigonal	0.003
P15a	$LaMn_{0.6}Co_{0.4}O_3$	0	0.6	0	0.4	0	Orthorhombic	0.024
P15b	$LaMn_{0.6}Co_{0.4}O_3$	0	0.6	0	0.4	0	Orthorhombic	0.017
P16	$LaMn_{0.1}Fe_{0.9}O_3$	0	0.1	0.9	0	0	Orthorhombic	0.009
P17	$LaMn_{0.1}Fe_{0.4}Co_{0.5}O_3$	0	0.1	0.4	0.5	0	Trigonal	0.003
P18	$LaMn_{0.1}Co_{0.9}O_3$	0	0.1	0	0.9	0	Trigonal	0.000
PN1a	LaMn _{0.4} (CrNi) _{0.3} O ₃	0.3	0.4	0	0	0.3	Orthorhombic	0.003
PN1b	LaMn _{0.4} (CrNi) _{0.3} O ₃	0.3	0.4	0	0	0.3	Orthorhombic	0.003
PN1c	LaMn _{0.4} (CrNi) _{0.3} O ₃	0.3	0.4	0	0	0.3	Orthorhombic	0.008

PN2	LaCo _{0.4} (CrNi) _{0.3} O ₃	0.3	0	0	0.4	0.3	Trigonal	0.002
PN3	LaCo _{0.4} (MnNi) _{0.3} O ₃	0	0.3	0	0.4	0.3	Trigonal	0.015
PN4	LaFe _{0.4} (CoNi) _{0.3} O ₃	0	0	0.4	0.3	0.3	Orthorhombic	0.015
PN5	LaNi _{0.4} (CrFe) _{0.3} O ₃	0.3	0	0.3	0	0.4	Orthorhombic	0.005
PN6	LaNi _{0.4} (CrCo) _{0.3} O ₃	0.3	0	0	0.3	0.4	Trigonal	0.008
PN7	LaNi _{0.4} (MnFe) _{0.3} O ₃	0	0.3	0.3	0	0.4	Orthorhombic	0.003
PN8	La(CrNi) _{0.5} O ₃	0.5	0	0	0	0.5	Orthorhombic	0.002
PN9	La(MnNi) _{0.5} O ₃	0	0.5	0	0	0.5	Orthorhombic	0.002
PN10	La(FeNi) _{0.5} O ₃	0	0	0.5	0	0.5	Orthorhombic	0.014
PN11	La(CoNi) _{0.5} O ₃	0	0	0	0.5	0.5	Trigonal	0.017
PN15	LaFe0.4Co0.1Ni0.5O3	0	0	0.4	0.1	0.5	Trigonal	0.008
PN16	LaFe0.1Co0.4Ni0.5O4	0	0	0.1	0.4	0.5	Trigonal	0.009
PN17a	La(CrMn)0.1Co0.2Ni0.6O3	0.1	0.1	0	0.2	0.6	Trigonal	0.006
PN17b	La(CrMn)0.1Co0.2Ni0.6O3	0.1	0.1	0	0.2	0.6	Trigonal	0.006
PN18a	LaFe0.1Co0.3Ni0.6O3	0	0	0.1	0.3	0.6	Trigonal	0.002
PN18b	LaFe0.1Co0.3Ni0.6O3	0	0	0.1	0.3	0.6	Trigonal	0.003
PN19a	La(FeCo)0.2Ni0.6O3	0	0	0.2	0.2	0.6	Trigonal	0.000
PN19b	La(FeCo)0.2Ni0.6O3	0	0	0.2	0.2	0.6	Trigonal	0.003
PN20	LaMn0.2Co0.1Ni0.7O3	0	0.2	0	0.1	0.7	Trigonal	0.008
PN21a	LaCr0.2Ni0.8O3	0.2	0	0	0	0.8	Trigonal	0.001
PN21b	LaCr0.2Ni0.8O3	0.2	0	0	0	0.8	Trigonal	0.001

Table S11 reports the compositions and the characterisations' results for samples included in the *validation set:* this set is arbitrarily computed in order to include the equimolar 5-cations perovskite and the five equimolar 4-cations perovskites obtained excluding one of the cations at the time, as already hinted above.

Sample	Formula	Cr	Mn	Fe	Co	Ni	Crystal Sytem	δ
P19	La(CrMnFeCo) _{0.25} O ₃	0.25	0.25	0.25	0.25	0	Orthorhombic	0.002
PN22	La(CrMnFeCoNi) _{0.2} O ₃	0.2	0.2	0.2	0.2	0.2	Orthorhombic	0.002
PN23	La(CrMnFeNi) _{0.25} O ₃	0.25	0.25	0.25	0	0.25	Orthorhombic	0.002
PN24	La(CrMnCoNi) _{0.25} O ₃	0.25	0.25	0	0.25	0.25	Trigonal	0.005
PN24	La(CrMnCoNi) _{0.25} O ₃	0.25	0.25	0	0.25	0.25	Trigonal	0.003
PN25	La(CrFeCoNi) _{0.25} O ₃	0.25	0	0.25	0.25	0.25	Orthorhombic	0.008
PN26	La(MnFeCoNi) _{0.25} O ₃	0	0.25	0.25	0.25	0.25	Orthorhombic	0.017

Table S11. Validation samples for modelling La(Cr,Mn,Fe,Co,Ni)O₃ system (6 experiments)

Zn-containing monophasic perovskites

Moving to Zn-containing perovskites, the ultimate list of *monophasic training samples* is reported in Table S12, together with the experimental values for the physico-chemical properties of interest. It must be underlined that, also in this case, the most interesting samples are synthesised and characterised in replicate.

Sample	Formula	Cr	Mn	Fe	Co	Zn	Crystal Sytem	δ
P1	LaCrO ₃	1	0	0	0	0	Orthorhombic	0.003
P2	La(CrMn) _{0.5} O ₃	0.5	0.5	0	0	0	Orthorhombic	0.006
P3	La(CrFe) _{0.5} O ₃	0.5	0	0.5	0	0	Orthorhombic	0.002
P4a	La(CrCo) _{0.5} O ₃	0.5	0	0	0.5	0	Trigonal	0.027
P4b	La(CrCo) _{0.5} O ₃	0.5	0	0	0.5	0	Trigonal	0.027
P5a	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	Orthorhombic	0.005
P5b	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	Orthorhombic	0.008
P5c	LaCr _{0.4} (FeCo) _{0.3} O ₃	0.4	0	0.3	0.3	0	Orthorhombic	0.002
P6	LaMn _{0.4} (CrFe) _{0.3} O ₃	0.3	0.4	0.3	0	0	Orthorhombic	0.011
P7	LaMn _{0.4} (CrCo) _{0.3} O ₃	0.3	0.4	0	0.3	0	Orthorhombic	0.002
P8	LaMnO3	0	1	0	0	0	Orthorhombic	0.006
P9a	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	Orthorhombic	0.021
P9b	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	Orthorhombic	0.018
P9c	La(MnFe) _{0.5} O ₃	0	0.5	0.5	0	0	Orthorhombic	0.020
P10	La(MnFe) _{0.5} O ₃	0	0.5	0	0.5	0	Orthorhombic	0.003
P11	LaMn _{0.4} (FeCo) _{0.3} O ₃	0	0.4	0.3	0.3	0	Orthorhombic	0.003
P12	LaFeO3	0	0	1	0	0	Orthorhombic	0.003
P13	La(FeCo) _{0.5} O ₃	0	0	0.5	0.5	0	Trigonal	0.021
P14	LaCoO3	0	0	0	1	0	Trigonal	0.003
P15a	LaMn _{0.6} Co _{0.4} O ₃	0	0.6	0	0.4	0	Orthorhombic	0.024
P15b	LaMn _{0.6} Co _{0.4} O ₃	0	0.6	0	0.4	0	Orthorhombic	0.017
P16	LaMn _{0.1} Fe _{0.9} O ₃	0	0.1	0.9	0	0	Orthorhombic	0.009
P17	$LaMn_{0.1}Fe_{0.4}Co_{0.5}O_3$	0	0.1	0.4	0.5	0	Trigonal	0.003
P18	LaMn _{0.1} Co _{0.9} O ₃	0	0.1	0	0.9	0	Trigonal	0.000
PZ13	LaCr _{0.3} Mn _{0.5} Zn _{0.2} O ₃	0.3	0.5	0	0	0.2	Orthorhombic	0.017
PZ14	LaCr _{0.3} Fe _{0.4} Co _{0.1} Zn _{0.2} O ₃	0.3	0	0.4	0.1	0.2	Orthorhombic	0.012
PZ15	$LaMn_{0.7}Fe_{0.1}Zn_{0.2}O_3$	0	0.7	0.1	0	0.2	Orthorhombic	0.006
PZ16a	LaCr _{0.7} Zn _{0.3} O ₃	0.7	0	0	0	0.3	Orthorhombic	0.041
PZ16b	LaCr _{0.7} Zn _{0.3} O ₃	0.7	0	0	0	0.3	Orthorhombic	0.035
PZ17a	LaCr _{0.4} (FeZn) _{0.3} O ₃	0.4	0	0.3	0	0.3	Orthorhombic	0.070
PZ17b	LaCr _{0.4} (FeZn) _{0.3} O ₃	0.4	0	0.3	0	0.3	Orthorhombic	0.056
PZ1	$LaMn_{0.4}(CrZn)_{0.3}O_3$	0.3	0.4	0	0	0.3	Orthorhombic	0.011

Table S12. Monophasic training samples for modelling La(Cr,Mn,Fe,Co,Zn)O₃ system (41 experiments including 12 replicates)

PZ18	La(CrMn) _{0.3} Fe _{0.1} Zn _{0.3} O ₃	0.3	0.3	0.1	0	0.3	Orthorhombic	0.012
PZ21a	LaMn _{0.4} (CoZn) _{0.3} O ₃	0	0.4	0	0.3	0.3	Orthorhombic	0.060
PZ21b	LaMn _{0.4} (CoZn) _{0.3} O ₃	0	0.4	0	0.3	0.3	Orthorhombic	0.065
PZ24	LaCr _{0.3} Mn _{0.2} Co _{0.1} Zn _{0.3} O ₃	0.3	0.2	0	0.1	0.4	Orthorhombic	0.008
PZ25a	LaMn _{0.5} Co _{0.1} Zn _{0.4} O ₃	0	0.5	0	0.1	0.4	Orthorhombic	0.023
PZ25b	LaMn _{0.5} Co _{0.1} Zn _{0.4} O ₃	0	0.5	0	0.1	0.4	Orthorhombic	0.020
PZ25c	LaMn _{0.5} Co _{0.1} Zn _{0.4} O ₃	0	0.5	0	0.1	0.4	Orthorhombic	0.021
PZ9	La(MnZn) _{0.5} O ₃	0	0.5	0	0	0.5	Orthorhombic	0.012

The same approach already discussed in the case of Ni is followed to compute the *validation set* for Zncontaining perovskites, reported in Table S5.

Table S13. Validation samples for modelling La(Cr,Mn,Fe,Co,Zn)O₃ system (6 experiments)

Sample	Formula	Cr	Mn	Fe	Co	Zn	Crystal Sytem	δ
P19	La(CrMnFeCo) _{0.25} O ₃	0.25	0.25	0.25	0.25	0	Orthorhombic	0.002
PZ26	La(CrMnFeCoZn) _{0.2} O ₃	0.2	0.2	0.2	0.2	0.2	Orthorhombic	0.008
PZ27	La(CrMnFeZn) _{0.25} O ₃	0.25	0.25	0.25	0	0.25	Orthorhombic	0.015
PZ28	La(CrMnCoZn) _{0.25} O ₃	0.25	0.25	0	0.25	0.25	Orthorhombic	0.029
PZ29	La(CrFeCoZn) _{0.25} O ₃	0.25	0	0.25	0.25	0.25	Orthorhombic	0.063
PZ30	La(MnFeCoZn) _{0.25} O ₃	0	0.25	0.25	0.25	0.25	Orthorhombic	0.002

Perovskites crystal system modelling and prediction by Design of Experiments

Design of Experiments is applied to model and predict the crystal system of the perovskites under investigation as it glaringly appears looking at the crystal system of samples in Table S12, determined by Rietveld method, monophasic Zn-containing perovskites exhibit only orthorhombic crystal system thus this property will be investigated only for Ni-containing materials.

Monophasic training samples in Table 12 are used to model the perovskite's crystal system, reported in the eighth column and determined by Rietveld method, according to the polynomial equation reported in Equation 1. From a mathematical point of view, perovskite crystal system is a dichotomic response, since only orthorhombic or trigonal materials have been obtained, thus we codify this dichotomic response into a 0-1 scale (1 for orthorhombic and 0 for trigonal) for the *monophasic training samples* to build the mathematical model and compute the coefficients by Multiple Linear Regression (MLR). [4]

The so-calculated coefficients are then used to predict the crystal system in the entire stability range assigning orthorhombic crystal system to predicted values above 0.55, trigonal crystal system for predictions below 0.45 and leaving a non-assigned region for intermediate predicted values between 0.45 and 0.55.

Being the crystal system a qualitative feature, the validation is performed by directly comparing the experimental and predicted crystal system for the samples in the *validation set* in Table S11 since no RMSE can be actually computed on such a response.

Oxygen non-stoichiometry modelling and optimisation by Design of Experiments

Finally, *monophasic training samples* are then employed to model and optimise the oxygen non-stoichiometry, reported in the last column, both in the case of Ni (Table S10) and Zn-containing (Table S12) perovskites, according to the polynomial model reported in Equation 1.

The experimental values determined for the *monophasic training samples* according to the procedure in Experimental Conditions are used to calculate the coefficients by Multiple Linear Regression; the coefficients' significance is addressed according to the standard deviation of fitting residuals. Finally, the calculated coefficients are used to estimate the oxygen non-stoichiometry crystal system in the entire stability range for both the cases.

Finally, model validation is performed statistically comparing the Root Mean Square Error in Prediction (RMSEP) for the *validation samples* in Table S11 (Ni-containing perovskites) and Table S5 (Zn-containing perovskites) with the fitting residuals standard deviation using an F-test. [3]

References

[1] R. Leardi, C. Melzi, G. Polotti, CAT (Chemometric Agile Tool), freely downloadable from http://gruppochemiometria.it/index.php/software

[2] D. Copelli, A. Falchi, M. Ghiselli, E. Lutero, R. Osello, D. Riolo, F. Schiaretti, R. Leardi. Sequential "asymmetric" D-optimal designs: a practical solution in case of limited resources and not equally expensive experiments. Chemom. Intell. Lab. Sys. 178 (2018) 24–31. <u>https://doi.org/10.1016/j.chemolab.2018.04.017</u>
[3] L. R. Magnaghi, M. Guembe-Garcia, V. Cerone, P. Perugini, G. Albert, R. Biesuz. DOE-based multicriteria optimization of starch/gly/CMC films' composition and preparation procedure by casting deposition. Chemom. Intell. Lab. Sys. 244 (2024) 105044.

[4] R. Leardi. Experimental design in chemistry: A tutorial. Anal. Chim. Acta. 652 (2009) 161–172.
 <u>https://doi.org/10.1016/j.aca.2009.06.015</u>