Supporting Information

Explorations of Highly Birefringent Materials in the Vanadium Oxyfluoride–Iodate System by Fluoride Ion Modulation

Yu Huang^{1,2}, Xue-Ying Zhang¹, San-Gen Zhao¹, Jiang-Gao Mao^{1,3}, and Bing-Ping Yang^{1,3*}

¹ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian

² State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei

³ University of Chinese Academy of Sciences, Beijing, 100049

*Corresponding Author: Bing-Ping Yang: ybp@fjirsm.ac.cn

Section	Title	Page		
Table S1	Crystallographic data for $Sr[VO_2F(IO_3)_2]$ and $Sr_3F_2(VO_2F_4)(IO_3)_2$	<u></u>		
Table S2	Selected bond lengths (Å) and angles (°) for $Sr[VO_2F(IO_3)_2]$.			
Table S3	Selected bond lengths (Å) and angles (°) for $Sr_3F_2(VO_2F_4)(IO_3)$.			
Table S4	Calculated dipole moments of IO_3 and VO_2F_4 units, and the net			
	dipole moment of a unit cell for $Sr[VO_2F(IO_2)_2]$			
Table S5	Calculated dipole moments of IO ₃ and VO ₄ F units, and the net $\frac{1}{2}$			
	dipole moment of a unit cell for $Sr_3F_2(VO_2F_4)(IO_3)$.			
Table S6	Comparison of some birefringent materials.			
Figure S1	Coordination environments of Sr^{2+} for $Sr[VO_2F(IO_3)_2]$.	S10		
Figure S2	Coordination environments of Sr^{2+} for $Sr_3F_2(VO_2F_4)(IO_3)$.			
Figure S3	Thermogravimetric analysis and differential scanning calorimetry			
	curves of $Sr[VO_2F(IO_3)_2]$ under a N ₂ atmosphere.			
Figure S4	Infrared spectra of $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$	S11		
	(b).			
Figure S5	Ultraviolet-visible-near-infrared diffuse reflectance spectra of	S12		
	$Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).			
Figure S6	Ultraviolet-visible-near-infrared absorption spectra of	S12		
	$Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).			
Figure S7	Calculated band structures of $Sr[VO_2F(IO_3)_2]$ (a) and	S13		
	$Sr_3F_2(VO_2F_4)(IO_3)$ (b).			
Figure S8	Partial and total density of states for $Sr[VO_2F(IO_3)_2]$ (a) and	S13		
	$Sr_3F_2(VO_2F_4)(IO_3)$ (b).			
Figure S9	Calculated frequency-dependent refractive indices of	S14		
	$Sr[VO_2F(IO_3)_2]$ (a). Birefringences of calculated birefringences			
	of $Sr[VO_2F(IO_3)_2]$ and $Sr_3F_2(VO_2F_4)(IO_3)$ and commercially			
	available birefringent crystals (b).			
Figure S10	Energy dispersive spectroscopy analysis for $Sr[VO_2F(IO_3)_2]$ (a)	S14		
	and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).			
Figure S11	Simulated and experimental powder X-ray diffraction patterns of	S15		
	$Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).			
References		S16		

Table of contents

Formula	Sr[VO ₂ F(IO ₃) ₂]	$Sr_3F_2(VO_2F_4)(IO_3)$
Formula weight	539.36	634.70
T (K)	294(8)	295.15(10)
Crystal system	Orthorhombic	Monoclinic
Space group	Pbcn	C2/c
a (Å)	5.1454(10)	20.681(4)
b (Å)	12.272(2)	5.4749(7)
c (Å)	12.1220(18)	16.686(3)
α (°)	90	90
β (°)	90	100.362(16)
γ (°)	90	90
V (Å ³)	765.5(2)	1858.5(5)
Ζ	4	8
ρ_{calc} (g/cm ³)	4.680	4.537
$\mu (\mathrm{mm}^{-1})$	16.289	21.523
F(000)	960.0	2272.0
R _{int}	0.0522	0.0447
Goodness-of-fit on F^2	1.098	0.982
$R_1, wR_2 [I \ge 2\sigma (I)]$	0.0401/0.0927	0.0500/0.1002
R_1 , wR_2 [all data]	0.0571/0.1058	0.0836/0.1200

Table S1. Crystallographic data for Sr[VO₂F(IO₃)₂] and Sr₃F₂(VO₂F₄)(IO₃).

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|; \ wR_2 = \left[\sum w(F_o^2 - F_c^2)^2 \right] / \sum w(F_o^2)^2 \right]^{1/2}$

I(1)-O(1)	1.799(8)	Sr(1)-O(2)#2	2.812(7)
I(1)-O(2)	1.800(7)	Sr(1)-O(2)#4	2.812(7)
I(1)-O(3)	1.850(7)	Sr(1)=O(1)	2.602(8)
Sr(1)-F(1)#3	2.711(3)	Sr(1)-O(1)#6	2.602(8)
Sr(1)-F(1)#1	2.711(3)	V(1)-F(1)	1.907(9)
Sr(1)-O(4)#4	2.694(7)	V(1)-O(4)	1.621(7)
Sr(1)-O(4)#2	2.694(7)	V(1)-O(4)#7	1.621(7)
Sr(1)-O(3)#5	2.819(7)	V(1)-O(3)#7	1.968(7)
Sr(1)-O(3)#3	2.819(7)	V(1)-O(3)	1.968(7)
O(2)–I(1)–O(3)	98.2(3)	O(4)#9-V(1)-O(4)	103.7(5)
O(1)–I(1)–O(3)	97.2(4)	O(4)-V(1)-O(3)#9	99.3(3)
O(1)–I(1)–O(2)	101.2(4)	O(4)#9-V(1)-O(3)	99.3(3)
F(1)-V(1)-O(3)#9	77.3(2)	O(4)#9-V(1)-O(3)#9	96.3(3)
F(1)-V(1)-O(3)	77.3(2)	O(4)-V(1)-O(3)	96.3(3)
O(4)-V(1)-F(1)	128.1(3)	O(3)#9-V(1)-O(3)	154.6(4)
O(4)#9-V(1)-F(1)	128.1(3)		

Table S2. Selected bond lengths (Å) and angles (°) for Sr[VO₂F(IO₃)₂]

Symmetry transformations used to generate equivalent atoms: #1 1-x, 1-y, 1-z; #2 3/2-x, 3/2-y, 1/2+z; #3 1/2-x, 3/2-y, 1/2+z; #4 1/2+x, 3/2-y, 1-z; #5 +x, 1-y, 1/2+z; #6 1-x, +y, 3/2-z; #7 1/2-x, 3/2-y, -1/2+z; #9 1-x, +y, 1/2-z

I(1)-O(1)	1.804(6)	Sr(2)-F(5)#3	2.876(6)
I(1)-O(2)	1.798(6)	Sr(2)-O(3)#6	2.666(7)
I(1)-O(3)	1.794(7)	Sr(2)-O(4)#7	2.882(8)
Sr(1)–F(1)	2.457(6)	Sr(3)-F(1)#6	2.477(5)
Sr(1)–F(2)	2.460(6)	Sr(3)-F(1)#4	2.484(6)
Sr(1)-F(5)#3	2.573(5)	Sr(3)-F(2)#4	2.481(5)
Sr(1)-F(6)#4	2.506(6)	Sr(3)–F(2)	2.464(5)
Sr(1)–O(1)	2.581(8)	Sr(3)-F(3)#4	2.503(5)
Sr(1)-O(1)#1	2.598(7)	Sr(3)-F(4)#8	2.503(5)
Sr(1)-O(2)#5	2.637(6)	Sr(3)-F(6)#4	2.622(6)
Sr(1)-O(3)#6	2.620(7)	Sr(3)-O(2)#1	2.735(7)
Sr(2)-F(1)#6	2.561(5)	V(1)-F(3)	2.177(6)
Sr(2)–F(2)	2.499(5)	V(1)-F(4)	2.031(6)
Sr(2)-F(3)#7	2.488(5)	V(1)-F(5)	1.908(6)
Sr(2)–F(3)	2.425(6)	V(1)-F(6)	1.898(5)
Sr(2)–F(4)	2.631(6)	V(1)–O(4)	1.692(6)
Sr(2)-F(4)#3	2.656(5)	V(1)-O(5)	1.603(8)
Sr(2)-F(5)#7	2.824(5)	O(2)-I(1)-O(1)	99.1(3)
O(3)–I(1)–O(1)	97.6(3)	O(4)-V(1)-F(5)	91.4(3)
F(5)-V(1)-F(4)	82.2(2)	O(4)-V(1)-F(6)	95.7(3)
F(6)-V(1)-F(3)	78.4(2)	O(5)-V(1)-F(3)	173.1(3)
F(6)-V(1)-F(4)	83.7(3)	O(5)-V(1)-F(4)	95.0(3)
F(6)-V(1)-F(5)	156.6(3)	O(5)-V(1)-F(5)	99.8(3)
O(4)-V(1)-F(3)	82.2(3)	O(5)-V(1)-F(6)	100.0(3)
O(4)-V(1)-F(4)	160.1(3)	O(5)-V(1)-O(4)	104.7(4)
O(3) - I(1) - O(2)	104.3(3)		

Table S3. Selected bond lengths (Å) and angles (°) for $Sr_3F_2(VO_2F_4)(IO_3)$.

Symmetry transformations used to generate equivalent atoms: #1 1-x, 1-y, 1-z; 2+x, -1+y, +z; #3 3/2-x, -1/2+y, 3/2-z; #4 3/2-x, 3/2-y, 1-z; #5 1-x, -y, 1-z; #6 +x, 1+y, +z; #7 3/2-x, 1/2+y, 3/2-z; #8 3/2-x, 5/2-y, 1-z

$Sr[VO_2F(IO_3)_2] (Z = 4)$				
	Dipole moment (D = Debye)			
Species	x(a)	y(b)	z(c)	Total magnitude
I1(1)O ₃	13.443	-2.180	-4.263	14.271
I2(1)O ₃	-13.443	-2.180	4.263	14.271
I1(2)O ₃	-13.443	-2.180	-4.263	14.271
I2(2)O ₃	13.443	-2.180	4.263	14.271
I1(3)O ₃	-13.443	2.180	-4.263	14.271
I2(3)O ₃	13.443	2.180	4.263	14.271
I1(4)O ₃	13.443	2.180	-4.263	14.271
I2(4)O ₃	-13.443	2.180	4.263	14.271
V(1)O ₄ F	0	0.178	0	0.178
V(2)O ₄ F	0	0.178	0	0.178
V(3)O ₄ F	0	-0.178	0	0.178
V(4)O ₄ F	0	-0.178	0	0.178

Table S4. Calculated dipole moments of IO_3 and VO_4F units, and the net dipole moment of a unit cell for $Sr[VO_2F(IO_3)_2]$.

$Sr_3F_2(VO_2F_4)(IO_3) (Z = 8)$				
	Dipole moment (D = Debye)			
Species	x(a)	y(b)	z(c)	Total magnitude
I(1)O ₃	3.108	-0.431	-13.826	14.178
I(2)O ₃	-3.108	-0.431	13.826	14.178
I(3)O ₃	3.108	0.431	-13.826	14.178
I(4)O ₃	-3.108	0.431	13.826	14.177
I(5)O ₃	3.108	-0.431	-13.826	14.178
I(6)O ₃	-3.108	-0.431	13.826	14.178
I(7)O ₃	3.108	0.431	-13.826	14.178
I(8)O ₃	-3.108	0.431	13.826	14.178
V(1)O ₂ F ₄	9.256	2.645	1.298	9.714
V(2)O ₂ F ₄	9.256	-2.645	1.298	9.714
V(3)O ₂ F ₄	-9.256	2.645	-1.298	9.714
V(4)O ₂ F ₄	-9.256	-2.645	-1.298	9.714
V(5)O ₂ F ₄	9.256	2.645	1.298	9.714
V(6)O ₂ F ₄	9.256	-2.645	1.298	9.714
V(7)O ₂ F ₄	-9.256	2.645	-1.298	9.714
V(8)O ₂ F ₄	-9.256	-2.645	-1.298	9.714

Table S5. Calculated dipole moments of IO_3 and VO_2F_4 units, and the net dipole moment of a unit cell for $Sr_3F_2(VO_2F_4)(IO_3)$.

compound	birefringence
TiO ₂ ^{1, 2}	0.256 at 546 nm ^{exp}
α -BaB ₂ O ₄ ³	0.122 at 532 nm ^{exp}
$MgF_{2}^{4,5}$	0.012 at 546 nm ^{exp}
LiNbO ₃ ⁶⁻⁹	0.074 at 1300 nm ^{exp}
YVO4 ¹⁰	0.204 at 532 nm ^{exp}
CaCO ₃ ^{11, 12}	0.172 at 532 nm ^{exp}
$NaVO_2(IO_3)_2(H_2O)^{13}$	0.150 at 1064 nm ^{cal}
$K_3V_2O_3F_4(IO_3)_3^{14}$	0.158 at 2050 nm ^{cal}
$CsVO_2F(IO_3)^{15}$	0.040 at 2050 nm $^{\rm cal}$
$Cs_2VOF_4(IO_2F_2)^{16}$	0.088 at 1064 nm ^{cal}
α -Ba ₂ [VO ₂ F ₂ (IO ₃) ₂]IO ₃ ¹⁷	0.200 at 2050 nm ^{cal}
$Zn_2(VO_4)(IO_3)^{18}$	0.180 at 1064 nm ^{cal}
$CsZrF_4(IO_3)^{19}$	0.200 at 1064 nm ^{cal}
LiMoO ₃ (IO ₃) ^{20, 21}	0.178 at 1064 nm ^{cal}
NaMoO ₃ (IO ₃) ²¹	0.208 at 1064 nm ^{cal}
$KRb[(MoO_3)_2(IO_3)_2]^{22}$	0.146 at 1064 nm ^{cal}
γ-KMoO ₃ (IO ₃) ²¹	0.087 at 1064 nm ^{cal}
$RbMoO_2F_3(IO_2F_2)^{23}$	0.217 at 1064 nm ^{cal}
$CsMoO_2F_3(IO_2F_2)^{23}$	0.203 at 1064 nm ^{cal}
$Ba_2[MoO_3F(IO_3)](MoO_3F_2)^{24}$	0.264 at 532 nm ^{cal}
Ba ₂ [MoO ₃ (OH)(IO ₃) ₂]IO ₃ ²⁵	0.225 at 1064 nm ^{cal}
$Sc(IO_3)_2(NO_3)^{26}$	0.348 at 546 nm ^{exp}
$CeF_2(SO_4)^{27}$	0.360 at 546 nm ^{exp}
α -Ba ₂ [GaF ₄ (IO ₃) ₂](IO ₃) ²⁸	0.126 at 1064 nm ^{cal}
β -Ba ₂ [GaF ₄ (IO ₃) ₂](IO ₃) ²⁸	0.135 at 1064 nm ^{cal}
$Ba_2[FeF_4(IO_3)_2]IO_3^{29}$	0.125 at 1064 nm ^{cal}
$Ba[FeF_4(IO_3)]^{29}$	0.053 at 1064 nm ^{cal}
$Zn(IO_3)F^{30}$	0.194 at 1064 nm ^{cal}

 Table S6. Comparison of some birefringent materials.

$Cd(IO_3)F^{31}$	0.072 at 1064 nm $^{\rm cal}$
$Y(IO_3)_2F^{32}$	0.041 at 1064 nm ^{cal}
$HfF_2(IO_3)_2^{33}$	0.333 at 550 nm $^{\rm cal}$
$LiGaF_2(IO_3)_2^{34}$	0.181 at 1064 nm ^{cal}
$Ba(IO_3)F^{35}$	0.1253 at 589.3 nm $^{\rm cal}$
$CeF_2(IO_3)_2^{36}$	0.14 at 1064 nm ^{cal}
$CeF_2(IO_3)_2(H_2O)^{37}$	0.046 at 1064 nm ^{cal}
(NH4)Bi2(IO3)2F5 ³⁸	0.069 at 589.3 nm $^{\rm cal}$
$Ce(IO_3)_3F^{39}$	0.225 at 546 nm $^{\rm cal}$
$NaGa(IO_3)_2F_2^{40}$	0.21 at 1064 nm ^{cal}
$CsHfF_4(IO_3)^{41}$	0.161 at 532 nm ^{cal}
$Ba[InF_3(IO_3)_2]^{42}$	0.172 at 1064 nm ^{cal}
PbFIO ₃ ⁴³	0.07 at 546.1nm ^{cal}
RbGaF ₃ (IO ₃) ⁴⁴	0.174 at 1064 nm ^{cal}
$ZrF_2(IO_3)_2^{44}$	0.329 at 1064 nm ^{cal}
$Li_2Ce(IO_3)_4F_2^{45}$	0.054 at 589 nm $^{\rm cal}$
$Cd_3(IO_3)(IO_4)F_2 \cdot 0.1CdO^{46}$	0.133 at 546.1 nm ^{cal}
Sr[VO ₂ F(IO ₃) ₂]	0.250 at 550 nm ^{cal}
Sr3F2(VO2F4)(IO3)	0.406 at 550 nm ^{cal}

Figure S1. Coordination environment of the Sr^{2+} cation for $Sr[VO_2F(IO_3)_2]$.

Figure S2. Coordination environments of Sr^{2+} cations for $Sr_3F_2(VO_2F_4)(IO_3)$.

Figure S3. Thermogravimetric analysis and differential scanning calorimetry curves of $Sr[VO_2F(IO_3)_2]$ under a N₂ atmosphere.

Figure S4. Infrared spectra of $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).

Figure S5. Ultraviolet–visible–near-infrared diffuse reflectance spectra of $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).

Figure S6. Ultraviolet–visible–near-infrared absorption spectra of $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).

Figure S7. Calculated band structures of $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).

Figure S8. Partial and total density of states for $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).

Figure S9. Calculated frequency-dependent refractive indices of $Sr[VO_2F(IO_3)_2]$ (a). Birefringences of calculated birefringences of $Sr[VO_2F(IO_3)_2]$ and $Sr_3F_2(VO_2F_4)(IO_3)$ and commercially available birefringent crystals (b).

Figure S10. Energy dispersive spectroscopy analysis for $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).

Figure S11. Simulated and experimental powder X-ray diffraction patterns of $Sr[VO_2F(IO_3)_2]$ (a) and $Sr_3F_2(VO_2F_4)(IO_3)$ (b).

References:

1. Devore, J. R. Refractive Indices of Rutile and Sphalerite. *Journal of the Optical Society of America*. **1951**, *41*, 416-419.

2. Li, W.; Wang, Y.; Lin, H.; Shah, S. I.; Huang, C. P.; Doren, D. J.; Rykov, S. A.; Chen, J. G.; Barteau, M. A. Band gap tailoring of Nd³⁺-doped TiO₂ nanoparticles. *Appl. Phys. Lett.* **2003**, *83*, 4143-4145.

3. Zhou, G. Q.; Xu, J.; Chen, X. D.; Zhong, H. Y.; Wang, S. T.; Xu, K.; Deng, P. Z.; Gan, F. X. Growth and spectrum of a novel birefringent alpha-BaB₂O₄ crystal. *Journal of Crystal Growth.* **1998**, *191*, 517-519.

4. Dodge, M. J. Refractive properties of magnesium fluoride. *Applied Optics.* **1984**, *23*, 1980-1985.

5. Chaney, R. C. SELF-CONSISTENT ENERGY-BAND STRUCTURE OF MAGNESIUM FLUORIDE USING THE LCAO METHOD. *Journal of Physics C-Solid State Physics*. **1980**, *13*, 5691-5699.

6. Zelmon, D. E.; Small, D. L.; Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate. *Journal of the Optical Society of America B-Optical Physics.* **1997**, *14*, 3319-3322.

7. Jia, Z.; Zhang, N. N.; Ma, Y. Y.; Zhao, L. W.; Xia, M. J.; Li, R. K. Top-Seeded Solution Growth and Optical Properties of Deep-UV Birefringent Crystal Ba₂Ca(B₃O₆)₂. *Crystal Growth & Design.* **2017**, *17*, 558-562.

8. Wang, N. Z.; Liang, F.; Yang, Y.; Zhang, S. Z.; Lin, Z. S. A new ultraviolet transparent hydra-cyanurate $K_2(C_3N_3O_3H)$ with strong optical anisotropy from delocalized pi-bonds. *Dalton Trans.* **2019**, *48*, 2271-2274.

9. Boyd, G. D.; Miller, R. C.; Nassau, K.; Bond, W. L.; Savage, A. LiNbO₃: AN EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIAL. *Appl. Phys. Lett.* **1964**, *5*, 234-236.

10. Luo, H. T.; Tkaczyk, T.; Dereniak, E. L.; Oka, K.; Sampson, R. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared. *Optics Letters.* **2006**, *31*, 616-618.

11. Ghosh, G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. *Opt. Commun.* **1999**, *163*, 95-102.

12. Chen, Y. X.; Chen, Z. X.; Zhou, Y.; Li, Y. Q.; Liu, Y. C.; Ding, Q. R.; Chen, X.; Zhao, S. G.; Luo, J. H. An Antimony(III) Fluoride Oxalate with Large Birefringence. *Chemistry-a European Journal.* **2021**, *27*, 4557-4560.

13. Yang, B. P.; Hu, C. L.; Xu, X.; Sun, C. F.; Zhang, J. H.; Mao, J. G. NaVO₂(IO₃)₂(H₂O): A Unique Layered Material Produces A Very Strong SHG Response. *Chemistry of Materials*. **2010**, *22*, 1545-1550.

14. Chen, J.; Hu, C. L.; Lin, Y. L.; Chen, Y.; Chen, Q. Q.; Mao, J. G. $K_3V_2O_3F_4(IO_3)_3$: a high-performance SHG crystal containing both five and six-coordinated V⁵⁺ cations. *Chem Sci.* **2022**, *13*, 454-460.

15. Chen, J.; Hu, C. L.; Zhang, X. H.; Li, B. X.; Yang, B. P.; Mao, J. G. CsVO₂F(IO₃): An Excellent SHG Material Featuring an Unprecedented 3D [VO₂F(IO₃)]⁻ Anionic Framework. *Angew Chem Int Ed Engl.* **2020**, *59*, 5381-5384.

Ding, M. M.; Wu, H. P.; Hu, Z. G.; Wang, J. Y.; Wu, Y. C.; Yu, H. W. Cs₂VOF₄(IO₂F₂): Rationally designing a noncentrosymmetric early-transition-metal fluoroiodate. *Journal of Materials Chemistry C.* 2022, *10*, 12197-12201.

17. Yu, H. W.; Nisbet, M. L.; Poeppelmeier, K. R. Assisting the Effective Design of Polar Iodates with Early Transition-Metal Oxide Fluoride Anions. *J Am Chem Soc.* **2018**, *140*, 8868-8876.

18. Yang, B. P.; Hu, C. L.; Xu, X.; Huang, C.; Mao, J. G. Zn₂(VO₄)(IO₃): A Novel Polar Zinc(II) Vanadium(V) lodate with a Large SHG Response. *Inorganic Chemistry.* **2013**, *52*, 5378-5384.

19. Lin, L.; Jiang, X. X.; Wu, C.; Lin, Z. S.; Huang, Z. P.; Humphrey, M. G.; Zhang, C. CsZrF₄(IO₃): The First Polar Zirconium Iodate with cis-[ZrO₂F₆] Polyhedra Inducing Optimized Balance of Large Band Gap and

Second Harmonic Generation. Chemistry of Materials. 2021, 33, 5555-5562.

20. Chen, X. A.; Zhang, L.; Chang, X. N.; Xue, H. P.; Zang, H. G.; Xiao, W. Q.; Song, X. M.; Yan, H. LiMoO₃(IO₃): A new molybdenyl iodate based on WO₃-type sheets with large SHG response. *Journal of Alloys and Compounds*. **2007**, *428*, 54-58.

21. Chen, J.; Hu, C. L.; Li, Y. L.; Chen, Q. Q.; Li, B. X.; Mao, J. G. AMoO₃(IO₃) (A = Na and K): Two promising optical materials via properly assembling the Λ-shaped basic building units. *Journal of Alloys and Compounds.* **2022**, *894*, 162547.

22. Li, Y. H.; Han, G. P.; Yu, H. W.; Li, H.; Yang, Z. H.; Pan, S. L. Two Polar Molybdenum(VI) Iodates(V) with Large Second-Harmonic Generation Responses. *Chemistry of Materials*. **2019**, *31*, 2992-3000.

23. Hu, Y. L.; Jiang, X. X.; Wu, C.; Huang, Z. P.; Lin, Z. S.; Humphrey, M. G.; Zhang, C. A₂MoO₂F₃(IO₂F₂) (A = Rb, Cs): Strong Nonlinear Optical Responses and Enlarged Band Gaps through Fluorine Incorporation. *Chemistry of Materials.* **2021**, *33*, 5700-5708.

24. Hou, Y.; Wu, H. P.; Yu, H. W.; Hu, Z. G.; Wang, J. Y.; Wu, Y. C. An Effective Strategy for Designing Nonlinear Optical Crystals by Combining the Structure-directing Property of Oxyfluorides with the Chemical Substitution. *Angew Chem Int Ed Engl.* **2021**, *60*, 25302-25306.

25. Huang, Q. M.; Hu, C. L.; Yang, B. P.; Tang, R. L.; Chen, J.; Fang, Z.; Li, B. X.; Mao, J. G. Ba₂[MoO₃(OH)(IO₃)₂]IO₃: A Promising SHG Material Featuring a Λ-Shaped Functional Motif Achieved by Universal Mono-Site Substitution. *Chemistry of Materials.* **2020**, *32*, 6780-6787.

26. Wu, C.; Jiang, X. X.; Wang, Z. J.; Lin, L.; Lin, Z. S.; Huang, Z. P.; Long, X. F.; Humphrey, M. G.; Zhang, C. Giant Optical Anisotropy in the UV-Transparent 2D Nonlinear Optical Material Sc(IO₃)₂(NO₃). *Angew Chem Int Ed Engl.* **2020**, *133*, 3506-3510.

27. Wu, C.; Wu, T. H.; Jiang, X. X.; Wang, Z. J.; Sha, H. Y.; Lin, L.; Lin, Z. S.; Huang, Z. P.; Long, X. F.; Humphrey, M. G.; et al. Large Second-Harmonic Response and Giant Birefringence of CeF₂(SO₄) Induced by Highly Polarizable Polyhedra. *J Am Chem Soc.* **2021**, *143*, 4138-4142.

28. Chen, J.; Hu, C. L.; Mao, F. F.; Feng, J. H.; Mao, J. G. A Facile Route to Nonlinear Optical Materials: Three-Site Aliovalent Substitution Involving One Cation and Two Anions. *Angew Chem Int Ed Engl.* **2019**, *58*, 2098-2102.

29. Huang, Q. M.; Hu, C. L.; Yang, B. P.; Fang, Z.; Huang, Y.; Mao, J. G. Ba₂[FeF₄(IO₃)₂]IO₃: a promising nonlinear optical material achieved by chemical-tailoring-induced structure evolution. *Chem Commun* (*Camb*). **2021**, *57*, 11525-11528.

30. Gai, M. Q.; Wang, Y.; Tong, T. H.; Yang, Z. H.; Pan, S. L. ZnIO₃F: Zinc lodate Fluoride with Large Birefringence and Wide Band Gap. *Inorg Chem.* **2020**, *59*, 4172-4175.

31. Cao, L. L.; Luo, M.; Lin, C. S.; Zhou, Y. Q.; Zhao, D.; Yan, T.; Ye, N. From centrosymmetric to noncentrosymmetric: intriguing structure evolution in d¹⁰-transition metal iodate fluorides. *Chemical communications.* **2020**, *56*, 10734-10737.

32. Peng, G.; Yang, Y.; Yan, T.; Zhao, D.; Li, B. X.; Zhang, G.; Lin, Z. S.; Ye, N. Helix-constructed polar rareearth iodate fluoride as a laser nonlinear optical multifunctional material. *Chemical Science*. **2020**, *11*, 7396-7400.

33. Huang, Y.; Fang, Z.; Yang, B. P.; Zhang, X. Y.; Mao, J. G. A new birefringent material, HfF₂(IO₃)₂, with a large birefringence and improved overall performances achieved by the integration of functional groups. *Scripta Materialia*. **2023**, *223*, 115082.

34. Chen, J.; Hu, C. L.; Mao, J. G. LiGaF₂(IO₃)₂: A mixed-metal gallium iodate-fluoride with large birefringence and wide band gap. *Science China Materials.* **2020**, *64*, 400-407.

35. Fan, H. X.; Peng, G.; Lin, C. S.; Chen, K. C.; Yang, S. D.; Ye, N. Ba(IO₃)F: An Alkaline-Earth-Metal

Iodate Fluoride Crystal with Large Band Gap and Birefringence. Inorg Chem. 2020, 59, 7376-7379.

36. Wu, T.; Jiang, X.; Wu, C.; Sha, H.; Wang, Z.; Lin, Z.; Huang, Z.; Long, X.; Humphrey, M. G.; Zhang, C. From $Ce(IO_3)_4$ to $CeF_2(IO_3)_2$: fluorinated homovalent substitution simultaneously enhances SHG response and bandgap for mid-infrared nonlinear optics. *Journal of Materials Chemistry C.* **2021**, *9*, 8987-8993.

37. Abudouwufu, T.; Zhang, M.; Cheng, S. C.; Yang, Z. H.; Pan, S. L. Ce(IO₃)₂F₂H₂O: The First Rare-Earth-Metal lodate Fluoride with Large Second Harmonic Generation Response. *Chemistry.* **2019**, *25*, 1221-1226.

38. Fan, H.; Lin, C.; Chen, K.; Peng, G.; Li, B.; Zhang, G.; Long, X.; Ye, N. (NH₄)Bi₂(IO₃)₃F₅ : An Unusual Ammonium-containing Metal lodate Fluoride Showing Strong Second Harmonic Generation (SHG) Response and Thermochromic Behavior. *Angew Chem Int Ed Engl.* **2019**, *59*, 5268–5272.

39. Ma, N.; Huang, Y.; Hu, C. L.; Zhang, M. Z.; Li, B. X.; Mao, J. G. Ce(IO₃)₃F and Ce(IO₃)₂(NO₃): Two Mixed-Anion Cerium lodates with Good Nonlinear Optical and Birefringent Properties. *Inorganic Chemistry.* **2023**, *62*, 15329-15333.

40. Yang, S. X.; Wu, H. P.; Hu, Z. G.; Wang, J. Y.; Wu, Y. C.; Yu, H. W. From $NaGa(IO_3)_3F$ to $NaGa(IO_3)_2F_2$ and $NaGa(IO_3)_4$: The Effects of Chemical Substitution between F^- Anions and IO_3^- Groups on the Structures and Properties of Gallium Iodates. *Inorganic Chemistry*. **2024**, *63*, 1404-1413.

41. Huang, Y.; Li, B. X.; Hu, C. L.; Yang, B. P.; Mao, J. G. CsHfF₄(IO₃): A Hafnium lodate Exhibiting a Strong Second- Harmonic-Generation Effect and a Wide Band Gap Achieved by Mixed-Ligand Acentric Coordination. *Inorganic Chemistry*. **2023**, *62*, 3343–3348

42. Jiang, X. Q.; Wu, H. P.; Yu, H. W.; Hu, Z. G.; Wang, J. Y.; Wu, Y. C. Synthesis, Structure, Characterization, and Calculation of a Noncentrosymmetric Fluorine-Containing Indium Iodate, BalnF₃(IO₃)₂. *Crystal Growth & Design.* **2021**, *21*, 4005-4012.

43. Xu, Y. Y.; Lin, C. S.; Zhao, D.; Li, B. X.; Cao, L. L.; Ye, N.; Luo, M. Chemical substitution – oriented design of a new polar PbFIO₃ achieving a balance between large second-harmonic generation response and wide band gap. *Scripta Materialia*. **2022**, *208*, 114347.

44. Chen, J.; Du, K. Z. ZrF₂(IO₃)₂ and RbGaF₃(IO₃): Two Promising Birefringent Crystals Featuring 1D Metal-Fluoride Cationic Chains and Wide Bandgaps. *Inorganic Chemistry.* **2022**, *61*, 17893-17901.

45. Tang, C. C.; Jiang, X. X.; Guo, S.; Guo, R. X.; Liu, L. J.; Xia, M. J.; Huang, Q.; Lin, Z. S.; Wang, X. Y. Synthesis, Crystal Structure, and Optical Properties of the First Alkali Metal Rare-Earth Iodate Fluoride: Li₂Ce(IO₃)₄F₂. *Crystal Growth & Design*. **2020**, *20*, 2135-2140.

46. Cao, L. L.; Zhang, S. Z.; Zhao, D.; Li, B. X.; Yan, T.; Yang, G. S.; Lin, Z. S.; Luo, M.; Ye, N. $Cd_3(IO_3)(IO_4)F_2$ -0.1CdO: A Nonlinear-Optical Crystal with the Introduction of Fluoride into Iodate Containing Both IO_3 -and IO_4 ³⁻Groups. *Inorganic Chemistry.* **2021**, *60*, 6040-6046.