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1. Materials, characterizations and methods

Experimental materials and reagents

4-Bromo-benzophenon, tri-tert-butyl, tris(dibenzylideneacetone)dipalladium, phenothiazine, 1-

bromonitrobenzene, triphenylphosphine were purchased from Adamas Reagent Company in China. Potassium 

phosphate and potassium hydroxide were purchased from Shanghai Aladdin Pharmaceutical Company. 

Iodomethane, N-bromobutyramide, bis(diboronato)diboron were purchased from Shanghai Bide 

Pharmaceutical Technology Co., Ltd. Sodium tert-butoxide, tetrakis(triphenylphosphine)palladium and 1,1’-

bis (diphenylphosphino)ferrocene (dppf) were purchased from Beijing Bailing Wei Science and Technology 

Co., Ltd. THF, toluene, 1-4-dioxane, etc. were all dried and deoxygenated by sodium metal particle. Ultra-dry 

o-dichlorobenzene was from Shanghai McLean Biochemical Technology Co., Ltd. Other reagents and 

solvents were from domestic reagent companies. The silica gel of column chromatography was 200-300 mesh 

and 300-400 mesh.

Structural Characterization Instruments for New Compounds

The new compounds described in this chapter have been characterized by 1H NMR,13C NMR as well as HRMS 

(MALDI-TOF) and melting point instrumentation to determine their structures. 1H NMR,13C NMR were done 

on Bruker AM 400 MHz and Bruker AM 500 MHz spectrometer, the deuterated reagents used for the tests 

were CDCl3, and tetramethylsilane as internal standard. HRMS (MALDI-TOF) was conducted on a Waters 

SYNAPT G2-Si mass spectrometer. The melting point was determined by a WRS-2 microcomputer melting 

point apparatus from Shanghai Yidian Physical and Optical Instrument Co., Ltd.

Theoretical Calculation

The electron density distribution of frontier molecular orbitals (FOMs) were visualized with Gauss view 5.0. 

All ground state geometries were optimized in B3LYP-D3(BJ)/6-31G* level in the gas phase by density 

functional theory (DFT). The S1 geometries were optimized in B3LYP-D3(BJ)/6-31G* level in the gas phase 

according to the time-dependence density functional theory (TD-DFT). Further frequency analyses were 

calculated in optimized geometries to accurately find the local minima. Based on the optimized geometries, 

excited state properties were subsequently investigated using TD-DFT. Based on the optimized geometries, 

excited state properties were subsequently investigated using TD-DFT in the B3LYP-D3(BJ)/6-311G* level.

Electrochemical Characterization

The oxidation and reduction potential were determined by cyclic voltammetry using 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6) in CH2Cl2 as a supporting A 3-electrode cell comprising 
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Ag/AgCl, a platinum mesh and ITO as the reference, counter, and working electrodes, respectively. All 

potentials were recorded versus Ag/AgCl (saturated) as a reference electrode. Oxidation of the 

ferrocene/ferrocenium (Fc/Fc+) redox couple in CH2Cl2/TBAPF6 occurs at Eox = +4.8 V. HOMO and LUMO 

levels were conducted from the oxidation and reduction half-wave potential with the formula: EHOMO/LUMO = 

– (Eoxi. v. s. Fc+/Fc + 4.8) (eV).

Photophysical Characterization

Absorption spectra were studied using a UV-vis spectrophotometer (HITACHI U-3900H). 

Photoluminescence (PL) spectra and phosphorescence spectra were performed using a HITACHI F-4600 

spectrophotometer. The transient fluorescence decay characteristics were measured using an Edinburgh 

Instruments FLS980 spectrometer. The transient fluorescence decay characteristics were measured using an 

Edinburgh Instruments FLS980 spectrometer. The temperature dependence experiment is conducted under 

the temperature dependence experiment is conducted under low temperature refrigeration system from 

Advanced Research Systems Company. The absolute fluorescence quantum yields of the solid films are 

measured.

OLED Fabrication and Characterization

After the cleaned indium tin oxide (ITO, 95 nm) substrates were treated with O2 plasma for 120 s, PEDOT: 

PSS (4083, Xian Polymer Light Technology Co., Ltd.) was spin-coated onto the treated ITO at 3000 rpm for 

30 s to form 35 nm hole injection layer, then backed at 80 ℃ for 15 min. Meanwhile, the preheated (@ 50 ℃, 

12 h) luminescent layer solutions (hosts and CBP: 10 mg/mL, in chlorobenzene) are cooled down to room 

temperature. Then, by dropping the liquid (50 μL) onto the center of ITO substrate, immediately, a 30 nm 

EML layer was spin-coated at 3000 rpm for 30 s for reducing the intermixing of two adjacent layers. Finally, 

the EML layer was annealed at 80 ℃ for 15 min and then immediately transferred to the evaporation chamber 

for avoiding solvents erosion. The electron transporting layer TmPyPB as well as cathode (i.e., CsF and Al) 

were then successively deposited under the vacuum below 1 × 10-4 Pa (active area:10 mm2), the thickness of 

various transporting materials was monitored by a quartz crystal thickness monitor (SQC-310, Inficon). The 

doping concentration of vacuum evaporated EMLs were controlled by their deposited rate, the rest processing 

routes remain unchanged. Before the characterization, all the devices were encapsulated with a UV-cured 

epoxy resin. The electroluminescent characteristics of devices were collected by XPQY-EQE-350-1100 

(Guangzhou Xi Pu Optoelectronics Technology Co., Ltd.) and powered by Keithley 2400, equipped with an 

integrated sphere (GPS-4P-SL, Labsphere) and a photodetector array (S7031-1006, Hamamatsu Photonics). 

The operation lifetimes of devices were recorded by a well-established measurement system (Crysco Test). 
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The transient EL decay profiles are recorded by an Edinburgh FL980 fluorescence spectrophotometer and 

driven by a digital oscilloscope (Tektronix, AFG3152C). The J-V characteristics of the hole-only and electron-

only devices were measured by a Photo Research PR745 instrument under dark environment, equipped with 

a Keithley 2450.

2. Scheme, Figures and Tables

2.1. Synthesis and characterization of target compounds and intermediates.

Synthesis of (4-(3,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-phenothiazin-10-
yl)phenyl)(phenyl)methanone (3)

3 (83%)2

BPIN2
Pd(dppf)Cl2
CH3COOK

1,4-dioxane, 100℃N

S BrBr

O

N

S

O

B
O

O B O

O

Compound 2 (2.11 mmol, 1.13 g), bis(pinacolato)diboron (6.37 mmol, 1.61 g), potassium acetate (7.96 

mmol, 0.78 g), Pd(dppf)Cl2 (0.2 mmol, 150 mg), and 30 ml of dried 1,4-dioxane were added to a 100 ml two-

necked bottle. The mixture was stirred at 100 °C for 24 h under N2 atmosphere. After cooling to room 

temperature, water was added to quench the reaction. The mixture was then extracted with CH2Cl2 three times. 

The solvent was removed under reduced pressure, and the crude product was purified by silica gel using 

column chromatography with petroleum ether/ dichloromethane (v/v=5:1) as the eluent. The compound 3 was 

obtained as a yellow solid in 83% yield (1.105 g). Melting point: 216.7~217.9 °C. 1H NMR (400 MHz, CDCl3) 

δ 8.00–7.98 (m, 2H), 7.87–7.84 (m, 2H), 7.63–7.59 (m, 1H), 7.53–7.49 (m, 4H), 7.43–7.40 (m, 2H), 7.37 (dd, 

J = 8.24, 1.4 Hz, 2H), 6.38 (d, J = 8.16 Hz, 2H), 1.31 (s, 24H). 13C NMR (100MHz, CDCl3) δ 195.61, 145.29, 

145.07, 137.39, 136.03, 133.72, 133.68, 132.65, 132.63, 130.02, 128.45, 127.60, 123.99, 122.46, 117.44, 

83.84, 24.85. HRMS (MALDI–TOF, m/z): [M+H]+ calcd for C37H40B2NO5S, 631.2735; found, 631.2848.
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Synthesis of (4-(3,7-bis(2-nitrophenyl)-10H-phenothiazin-10-yl)phenyl)(phenyl)methanone (4)

3

Pd(PPh3)4
K3PO4

4 (80%)

Toluene/EtOH/H2O, 85℃
N

S

O

B
O

O B O

O NO2

N

S

O

O2N

Br
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Compound 3 (1.8 mmol, 1.14 g), 1-bromo-2-nitrobenzene (5.41 mmol, 1.09 g), K3PO4 (6.60 mmol, 1.40 

g), Pd(PPh3)4 (0.18 mmol, 207 mg), 50 ml of toluene, 10 ml of ethanol, and 5 ml of water were added to a 

100-ml two-necked bottle. Then the mixture was stirred for 85 °C for 24 h under N2 atmosphere. After cooling 

to room temperature, water was added to quench the reaction. The mixture was then extracted with CH2Cl2 

three times. The solvent was removed under reduced pressure, and the crude product was purified by silica 

gel using column chromatography with petroleum ether/ dichloromethane (v/v=5:2) as the eluent. The 

compound 4 was obtained as a red solid in 80% yield (895 mg). Melting point: 232.4~235.0 °C.1H NMR (500 

MHz, CDCl3) δ 8.04–8.02 (m, 2H), 7.88–7.82 (m, 4H), 7.65–7.58 (m, 3H), 7.55–7.45 (m, 6H), 7.40 (dd, J = 

7.65, 1.00 Hz, 2H), 7.10 (d, J = 2.00 Hz, 2H), 6.91 (dd, J = 8.45, 2.05 Hz, 2H), 6.50 (d, J = 8.45 Hz, 2H). 13C 

NMR (125 MHz, CDCl3) δ 195.57, 149.05, 145.05, 142.98, 137.35, 136.29, 134.88, 132.90, 132.69, 132.68, 

132.42, 131.70, 130.04, 128.47, 128.28, 127.70, 126.85, 126.69, 124.21, 123.34, 118.21. HRMS (MALDI–

TOF, m/z): [M+H]+ calcd for C37H24N3SO5, 622.1358; found, 622.1439.

Synthesis of (4-(9,16-dimethyl-9H-diindolo[2,3-b:2',3'-h]phenothiazin-7(16H)-
yl)phenyl)(phenyl)methanone (BP1)

（i）PPh 3, 1,2-dichlorobenzene, reflux

4 BP1 (20%)

（ii）Iodomethane, KOH, DMSO, 85℃

NO2
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(i) Compound 4 (0.97 mmol, 621 mg), PPh3 (9.7 mmol, 2.54 g) and 20 ml of ultra-dry o-dichlorobenzene 

(o-DCB) ware added in a 100 ml two-necked bottle. Nitrogen was introduced and evacuated with vacuum 

pump for 30 minutes. The mixture stirred and heated to reflux and was continued for 24 h. o-DCB was 
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removed by distillation under reduced pressure after reaction was stopped. The crude product obtained was 

separated by column chromatography using the eluting agent petroleum ether/ dichloromethane/ ethyl acetate 

(v/v=12:2:1). The earthy solid obtained was directly put into the next step of the reaction. (ii) The earthy solid 

obtained from the previous step was added to a 100 ml two-necked bottle. 1-Iodomethane (2.26 mmol, 480 

mg), KOH (2.26 mmol, 126 mg), DMSO (40 ml) ware added under nitrogen. After evacuating for 15 minutes 

by vacuum pump, the reaction mixture was stirred and heated at 85°C for 24 h. After that deionized water 

(100 mL) was added to the mixture, and the resulting yellow solid was collected by filtration and washed with 

water (100 mL) three times to give BP1 as a yellow solid in 20% yield (113 mg). Melting point: 279.9–

282.9°C. 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 8.09– 8.06 (m, 3H), 7.78–7.74 (m, 4H),7.69 (s, 1H), 

7.54–7.50 (m, 4H),7.47–7.41 (m, 4H), 7.31–7.28 (m, 2H), 7.13 (d, J = 8.80 Hz, 2H), 4.32 (s, 3H), 3.86 (s, 

3H). 13C NMR (100 MHz, CDCl3) δ 195.23, 151.19, 142.16, 141.97, 140.88, 140.51, 140.37, 138.97, 138.71, 

134.22, 132.29, 131.54, 129.63, 128.70, 128.09, 126.31, 126.12, 125.42, 122.36, 122.15, 121.82, 121.55, 

120.40, 120.17, 119.72, 119.65, 119.55, 118.83, 112.99, 111.88, 108.91, 108.74, 108.05, 32.86, 29.40. HRMS 

(MALDI–TOF, m/z): [M]+ calcd for C39H27N3OS, 585.1875; found, 585.1597.

Synthesis of (4-(14,16-dimethyl-14H-diindolo[3,2-c:2',3'-h]phenothiazin-7(16H)-
yl)phenyl)(phenyl)methanone (BP2)

（i）PPh 3, 1,2-dichlorobenzene, reflux

4 BP2 (5%)

（ii）Iodomethane, KOH, DMSO, 85℃

NO2

N

S

O

O2N

N

N N
S

O

The synthesis was described with reference to the synthesis of BP1 above, resulting in a yellow solid in 

5% yield. Melting point: 291.5–293.9°C.1H NMR (500 MHz, CDCl3) δ 8.06–8.03 (m, 4H), 7.71–7.67 (m, 

4H), 7.49–7.46 (m, 5H), 7.41–7.38 (m, 4H), 7.24 (d, J = 6.45 Hz, 2H), 7.04 (d, J = 8.90 Hz, 2H), 4.3 (s, 6H). 

13C NMR (125 MHz, CDCl3) δ 195.15, 150.98, 142.04, 141.37, 138.94, 138.80, 132.25, 131.44, 129.59, 

128.47, 128.05, 126.17, 122.39, 122.22, 120.21, 119.88, 119.59, 119.42, 118.66, 112.44, 108.81, 32.79. 

HRMS (MALDI–TOF, m/z): [M]+ calcd for C39H27N3OS, 585.1875; found, 585.2578.
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2.2. Figures
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Figure S1. Cyclic voltammograms of BP1 and BP2 in DCM solution.
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Figure S2. UV–Vis absorption spectra of BP1 (a) and BP2 (b) in various solutions (10-4 M). PL spectra of 

BP1 (c) and BP2 (d) in various solutions (10-4 M). BP1 exhibits enhanced white fluorescence and dual 

emissions from “ax” and “eq” conformers in dioxane solution. In BP2, the peaks between 400 nm and 470 

nm exhibit little redshift in various solutions, showing the characteristics of local excitation. Both 

compounds exhibit red emission peaks attributed to “eq” conformer in toluene, which indicate a hybrid local 

excited and charge transfer character in different solutions. 
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Figure S3. The emission spectra of BP1 (a) and BP2 (b) by gradual addition of methanol in THF solution 
(10-4 M).

Figure S4. Changes in the emission spectra of BP1 (a) and BP2 (b) by gradual addition of methanol in toluene 
solution (10-4 M).

The emission spectra of BP1 in different solvents (toluene, chloroform, THF, DCM, dioxane, acetone, 

see Figure 2) are investigated. The emission peak and intensity of the emission at around 630 nm obviously 

exhibited vastly disappeared as the polarity of the solvent increased, which indicated its stronger CT character. 

While for the first emission at around 420 nm, its intensity also gradually decreased with the polarity of the 

solvent increased. This result further proved that wake CT emission comes from ax-conformer, and stronger 

CT comes from “eq” conformer. Further, the emission spectra of BP1 in Toluene/CH3OH and THF/CH3OH 

have been measured as shown in Figure S3 and S4, which further prove the CT character of two emissions. 

We cannot found the emission from“eq” conformer (higher energy emission) in THF/ CH3OH because of 

this emission exhibit obvious CT character, which will disappear in stronger polarity solution. This has been 

proved in our article (Figure S2). On the other hand, we can find that the emission from “ax” conformer (lower 

energy emission) also exhibit CT character, because of the wavelength redshifted with the increase of volume 

of methanol. The peak around 480 nm is attributed to the donor which exhibit LE character.1 
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Figure S5. PL spectra of BP1 in toluene (10-4 M) (a)(b) at different excitation wavelengths. PL spectra of 
BP2 in toluene (10-4 M) (c)(d) at different excitation wavelengths.
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Figure S6. (a) Absorption and PL spectra of BP1 and BP2 in neat films at room temperature. (b) Normalized 
phosphorescence spectra of BP1 and BP2 neat films at 77 K with delay lifetime of 20 ms.
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Figure S7. (a) PL spectra of BP1 neat and doped films. (b) PL spectra of BP2 neat and doped films. Transient 
decay characteristics: (c) BP1 neat and doped films at 580 nm. (d) BP2 neat and doped films at 574 nm.
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Figure S8. PL spectra of BP1 (a) and BP2 (b) at different temperatures (77, 100, 200, and 300 K). Transient 
decay spectra of BP1 (c) and BP2 (d) at different temperatures (77, 100, 200, and 300 K) at 580 nm and 574 
nm, respectively. 
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Figure S9. PL spectra of BP1 (a) and BP2 (b) neat film in air and vacuum. PL spectra of 10 wt. % BP1: CBP 
film (c) and10 wt. % BP2: CBP film (d) in air and vacuum.
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Figure S10. (a) 580 nm transient decay spectrum of BP1 neat film in air and vacuum. (b) 574 nm transient 
decay spectrum of BP2 neat film in air and vacuum.
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(a)

(b)

Figure S11. (a) Photographs of BP1 original crystalline powder before and after grinding taken under 

daylight. (b) Photographs of BP1 film taken under 365 nm UV irradiation and after heating at 160℃ for 2h.
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Figure S13. Flexible potential energy surface scans of the ground and excited states BP1(a) and BP2(b) at 
different torsion angles. Scans of the flexible potential energy surfaces of the ground (c) and excited (d) states 
of BP1-2 at different torsion angles.
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Figure S14. Performance of BP1-based OLED with doped different concentration (10%, 40%, 80%, and 
100%. (a) EL spectra at 14V. (b) External quantum efficiency (ηext) versus current density plots. (c) Current 
density and luminance versus voltage (J-V-L) characteristics. (d) Current efficiency-luminance-power 
efficiency.
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Figure S15. Performance of BP2-based OLED with doped different concentration (10%, 40%, 80%, and 
100%. (a) EL spectra at 12V. (b) External quantum efficiency (ηext) versus current density plots. (c) Current 
density and luminance versus voltage (J-V-L) characteristics. (d) Current efficiency-luminance-power 
efficiency.
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Table S1. The PLQYs of BP1 and BP2.

Emitters BP1 BP2

PLQYs 4.53%a /17.02%b 3.49%a /19.68%b 

a Toluene; b10 wt. % (BP1/ BP2): CBP film.

Table S2. The calculates potential energy for the "ax" and "eq" conformations in vacuum.2 

Potential Energy (Hartree) Energy Difference
Activation Energy 

for "ax"
Activation Energy for 

"eq"Compd
"ax" "eq" Barrier (Hartree) (eV) (Hartree) (eV) (Hartree) (eV)

BP1 –2140.32148 –2140.31742 –2140.31474 –0.00406 0.1105 –0.00674 0.1834 –0.00268 0.0729
BP2 –2140.31850 –2140.31310 –2140.31057 –0.00540 0.1469 –0.00793 0.2158 –0.00253 0.0688

Table S3. Summary of OLED performances using BP1.

concentration Von

(V)a
Lmax

(cd m-2) b
CEmax

(cd A-1) c
PEmax

(1m W-1) d
EQEmax

(%)e
λEL

(nm)f

CIE
(X, Y)g

non-doped 4.6 773 1.596 0.794 0.79 588 (0.50, 0.47)
80 wt% 4.6 849 1.915 0.845 0.86 585 (0.49, 0.48)
40 wt% 4.4 2715 2.548 0.980 1.02 573 (0.45, 0.49)
10 wt% 5.0 2264 7.612 3.334 2.92 561, 466 (0.38, 0.44)

a Start-up voltage; b Maximum brightness; c Maximum current efficiency; d Maximum power efficiency; e 

Maximum external quantum efficiency; f Wavelength with voltage of 14 V; g Color 1931 coordinates.

Table S4. Summary of OLED performances using BP2.

concentration Von

(V)a
Lmax

(cd m-2) b
CEmax

(cd A -1) c
PEmax

(1m W-1) d
EQEmax

(%)e
λEL

(nm)f

CIE
(X, Y)g

non-doped 4.0 742 3.605 2.130 1.57 583 (0.46, 0.48)
80 wt% 3.8 510 2.074 1.297 0.81 567 (0.41, 0.47)
40 wt% 4.2 1236 3.113 1.820 1.15 536 (0.34, 0.43)
10 wt% 3.4 2186 6.976 4.378 2.61 493 (0.33, 0.36)

a Turn-on voltage; b Maximum luminance; c Maximum current efficiency; d Maximum power efficiency; e 

Maximum external quantum efficiency; f Wavelength with a voltage of 12 V; g Color 1931 coordinates.
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NMR Spectra and HRMS
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HRMS (MALDI–TOF) of BP2.
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