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1. General methods

All the reactions were carried out under a nitrogen atmosphere. The 6(5H)-
Phenanthridinone, halogen-substituted benzyl bromide and reagents of CuCN, K,COs3,
N-Bromosuccinimide, N-chlorosuccinimide were purchased from commercial
suppliers and used directly without further purification. "H NMR spectra were recorded
on a Varian Mercury 400 NMR spectrometer in CDCl; using tetra-methylsilane as the
internal standard. '*C NMR spectra were recorded on the Bruker AVANCE III HD 600
MHz NMR spectrometer in CDCIl; using tetra-methylsilane as the internal standard.
High-resolution mass spectra were recorded on a thermo scientific Q-exactive focus

(FTMS + pESI) mass spectrometer. High-performance liquid chromatography (HPLC)



was performed on the Waters €2695 HPLC system using an XBridge™-C18 column (5
mm). The running buffer was 10%H,0-90%MeOH. The UV-vis absorption spectra
were recorded on a UV-2600 spectrophotometer, and the photoluminescence spectra
were recorded on a PerkinElmer LS55 fluorescence spectrometer. Absolute quantum
yields were measured by integrating sphere on a Quantaurus-QY plus (Hamamatsu
C11347-11) spectrofluorometer. The lifetimes were measured on an Edinburgh
FLS1000 fluorescence spectrophotometer equipped with a continuous xenon lamp
(Xel), a microsecond pulsed xenon flashlamp (uF920), and a nanosecond flashlamp
lamp (nF920), respectively. Single crystal data were collected on a Bruker Smart
APEXII CCD diffractometer using graphite monochromated Mo Ka radiation (A =
0.71073 A) or Cu Ka radiation (A = 1.54184 A). Elemental analysis was performed on
an EL cube. The photos and videos were recorded by a Nikon 7200.

Mean decay times (z,) were obtained from individual lifetimes 7; and amplitudes a;

of multi-exponential evaluation by the below equation:

2. Density functional theory calculations

The geometries of all compounds in isolated gas state were optimized by density
functional theory (DFT) using the B3LYP density functional and 6-31G (d, p) basis
set. Analytical frequency calculations were also carried out at the same level of theory
to confirm that the optimized structures are located at a minimum point. The quantum
mechanics/molecular mechanics (QM/MM) theory with tow-layer ONIOM method!!!
was implemented to calculated the aggregation effect and vertical excitation energies
of Sn and Tn in the crystal at the B3LYP/6-31G (d, p) level. The computational models
were built by digging a 3x3x3 supercell from X-ray crystal structure without further
optimization, and the central molecule acts as the QM part (high layer) and the
surrounding molecules are treated as MM part (low layer), as shown in Chart S1~ 6.
The universal force field (UFF) was used for the MM expressions. The above-
mentioned quantum chemical calculations were carried out by using Gaussian 09121,
Spin-orbital coupling matrix elements of structures in gas state and crystal were

investigated by ORCA program (Version 5.0.3).



Chart S1. QM/MM model of PTD-BnBr: one central QM molecule for the higher

layer and the surrounding MM molecules for the lower layer.

Chart S2. QM/MM model of PTD-BnCl: one central QM molecule for the higher

layer and the surrounding MM molecules for the lower layer.

Chart S3. QM/MM model of PTD-BnCN: one central QM molecule for the higher

layer and the surrounding MM molecules for the lower layer.



Chart S4. QM/MM model of Br-PTD: one central QM molecule for the higher layer

and the surrounding MM molecules for the lower layer.
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Chart S5. QM/MM model of CI-PTD: one central QM molecule for the higher layer

and the surrounding MM molecules for the lower layer.



Chart S6. QM/MM model of CN-PTD: one central QM molecule for the higher layer

and the surrounding MM molecules for the lower layer.
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Scheme S1. Representative organic small molecular RTP materials reported in recent
years (RTP properties including the emission wavelength, lifetime, and
phosphorescence quantum efficiency were obtained from powders or crystals under

ambient conditions).

3. Synthesis of target compounds
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Scheme S2. General synthetic routes of PTD derivatives PTD-BnBr, PTD-BnCl,
PTD-BnCN, Br-PTD, CI-PTD, and CN-PTD.

3.1 General synthetic procedure of PTD-BnBr, PTD-BnCl and PTD-BnCN
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Scheme S3. The synthetic route of PTD-BnBr, PTD-BnCl and PTD-BnCN.

PTD-BnBr: 6(5H)-Phenanthridinone (0.78 g, 4.0 mmol), K,CO3 (1.66 g, 12.0 mmol)
and anhydrous DMF (20 mL) were added into a 100 mL double-neck round-bottom



flask. The mixture was stirred at 100 °C for 1 h under a nitrogen stream. Then, 1-
(bromomethyl)-4-bromobenzene (1.50 g, 6.0 mmol) was added, and the resulting
mixture was heated at 70 °C for 8 h. After cooling to room temperature, water (20 mL)
was poured into the reaction mixture, and stirred for 10 min. The resulting mixture was
extracted by ethyl acetate for three times, then the combined organic layers were dried
over anhydrous MgSO, and the solvent was removed under reduced pressure. The crude
product was purified by silica gel column chromatography (eluent: petroleum
ether/CH,Cl, = 2:1), followed by recrystallization for two times from
chloroform/methanol to get colorless crystals (yield: 1.04 g, 71.0%). '"H NMR (CDCl;,
400 MHz) ¢ (ppm): 5.52 (s, 2H), 7.06 (d, J = 8.4 Hz, 2H), 7.24 — 7.11 (m, 2H), 7.32
(m, 3H), 7.54 (t, J= 7.6 Hz, 1H), 7.72 (t, J = 7.7 Hz, 1H), 8.22 (m, 2H), 8.53 (m,1H).
BCNMR (151 MHz, CDCl3) 8 (ppm): 161.98, 137.19, 135.81, 133.92, 132.96, 132.02,
129.73, 129.27, 128.46, 128.26, 125.39, 123.54, 122.87, 121.86, 121.17, 119.68,
115.88, 46.07. HRMS (ESI) m/z: caled for CyH14BrNO: 363.0259. Found: 364.03267
(M+1)". Elemental analysis calcd for C,0H;4BrNO: C, 65.95. H, 3.87. N, 3.85. Found:
C, 65.56. H, 3.74. N, 3.58.

PTD-BnCl: Yield: 56.0%. '"H NMR (CDCl;, 400 MHz) & (ppm): 5.63 (s, 2H), 7.21 (d,
J = 8.6 Hz, 2H), 7.27 (m, 4H), 7.41 (m, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.81 (m, 1H),
8.31 (m, 2H), 8.62 (m,1H). 13C NMR (101 MHz, CDCl3) é (ppm): 162.03, 137.27,
135.30, 133.97, 133.15, 132.99, 129.76, 129.33, 129.12, 128.29, 128.14, 125.46,
123.58, 122.89, 121.89, 119.74, 115.93, 46.06. HRMS (ESI) m/z: calcd for
CyoH4CINO: 319.0764. Found: 320.08334 (M+1)". Elemental analysis calcd for
Cy0H14CINO: C, 75.12. H, 4.41. N, 4.38. Found: C, 75.00. H, 4.28. N, 4.28.
PTD-BnCN: Yield: 68.0%. 'H NMR (CDCl;, 500 MHz) & (ppm): 6 5.71 (s, 2H), 7.16
(d, J=8.4 Hz, 1H), 7.34 — 7.30 (m, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.40 — 7.43 m, 1H),
7.60 (d, J= 8.4 Hz, 2H), 7.67 — 7.62 (m, 1H), 7.85 —7.80 (m, 1H), 8.33 (d, /= 8.1 Hz,
2H), 8.60 (dd, J = 8.0, 1.1 Hz, 1H). *C NMR (151 MHz, CDCl;) 8 (ppm): 162.02,
142.37, 137.02, 133.95, 133.20, 132.82, 129.87, 129.31, 128.43, 127.40, 125.25,
123.77,123.14,121.96, 119.79, 118.77, 115.60, 111.39, 46.36. HRMS (ESI) m/z: calcd
for C;;H14N,0O: 310.1106. Found: 311.11760 (M+1)*. Elemental analysis calcd for
C,;1H14N,0: C, 81.27. H, 4.55. N, 9.03. Found: C, 80.84. H, 4.19. N, 8.74.

3.2 General synthetic procedure of Br-PTD, CI-TPD, and CN-PTD
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Scheme S4. Synthetic routes of compounds Br-PTD, CI-PTD, and CN-PTD.

The compounds 2-bromophenanthridin-6(5H)-one, 2-chlorophenanthridin-6(5H)-
one, and 2-cyanophenanthridin-6(5H)-one were prepared according to the previous
literatures without any modification.[>4]

Br-PTD: 2-bromophenanthridin-6(5H)-one (0.68 g, 2.5 mmol), K,CO; (0.69 g, 5.0
mmol) and anhydrous DMF (20 mL) were added into a 50 mL double-neck round-
bottom flask. The mixture was stirred at 100 °C for 1 h under a nitrogen stream. Then,
1-(bromomethyl)-4-bromobenzene (0.94 g, 3.75 mmol) was added and the solution was
heated at 70 °C for 8 h. After cooling to room temperature, water (20 mL) was poured
into the reaction mixture, and stirred for 10 min. The resulting mixture was extracted
by ethyl acetate for three times, then the combined organic layers were dried over
anhydrous MgSO, and the solvent was removed under reduced pressure. The crude
product was purified by silica gel column chromatography (eluent: petroleum
ether/CH,Cl, = 2:1), followed by recrystallization for two times from
chloroform/methanol to get colorless crystals (yield: 0.80 g, 72.6%). 'H NMR (CDCl;,
400 MHz) ¢ (ppm): 5.57 (s, 2H), 7.11 (dd, J = 8.6, 5.5 Hz, 3H), 7.42 (d, J = 8.4 Hz,
2H), 7.48 (dd, J = 9.0, 2.1 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.82 (t, J = 7.7 Hz, 1H),
8.23 (d, J= 8.2 Hz, 1H), 8.38 (d, J = 2.1 Hz, 1H), 8.60 (d, J= 8.0 Hz, 1H). 3C NMR
(151 MHz, CDCl;) 6 (ppm): 161.62, 136.13, 135.34, 133.20, 132.66, 132.37, 132.14,
129.40, 128.98, 128.38, 126.34, 125.54, 121.95, 121.48, 121.39, 117.55, 116.11, 46.13.
HRMS (ESI) m/z: calecd for C,yH3Br,NO: 440.9364. Found: 441.9434 (M+1)".
Elemental analysis caled for C,0H13Br,NO: C, 54.21. H, 2.96. N, 3.16. Found: C, 54.45.
H, 2.87. N, 3.08.

CI-PTD: Yield: 79.0%. 'H-NMR (CDCls, 500 MHz) (ppm): 5.58 (s, 2H), 7.12 (d, J =
8.4 Hz, 2H), 7.16 (d, J = 9.0 Hz, 1H), 7.35 (dd, /=9.0, 2.3 Hz, 1H), 742 (d, /= 8.4
Hz, 2H), 7.70 — 7.63 (m, 1H), 7.85 — 7.80 (m, 1H), 8.26 — 8.21 (m, 2H), 8.60 (dd, J =



8.0, 1.3 Hz, 1H). >*C NMR (101 MHz, CDCI;) 6 (ppm):161.67, 135.75, 135.40, 133.22,
132.79, 132.16, 129.59, 129.45, 128.99, 128.66, 128.40, 125.61, 123.37, 121.98,
121.41, 121.12, 117.28, 46.20. HRMS (ESI) m/z: caled for C;oH;3BrCINO: 396.9869.
Found: 397.9939 (M+1)". Elemental analysis calcd for C,,H3BrCINO: C, 60.25. H,
3.29. N, 3.51. Found: C, 60.19. H, 3.00. N, 3.36.

CN-PTD: Yield: 76.9%. 'H-NMR (CDCl;, 500 MHz) (ppm): 8 5.59 (s, 2H), 7.11 (d, J
= 8.4 Hz, 2H), 7.30 (d, /= 8.8 Hz, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.63 (dd, /= 8.8, 1.8
Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 7.90 — 7.84 (m, 1H), 8.26 (d, J = 8.2 Hz, 1H), 8.56
(d, J= 1.6 Hz, 1H), 8.60 (dd, J = 8.0, 1.0 Hz, 1H). 3C NMR (151 MHz, CDCls)
(ppm): 161.75, 140.08, 134.77,133.70, 132.41, 132.27,132.23, 129.61, 129.53, 128.31,
128.13, 125.52, 121.95, 121.66, 120.31, 118.68, 116.69, 106.44, 46.28. HRMS (ESI)
m/z: calcd for C,;H3BrN,O: 388.0211. Found: 389.0281 (M+1)*. Elemental analysis
caled for C,;H3BrN,O: C, 64.80. H, 3.37. N, 7.20. Found: C, 64.89. H, 3.18. N, 7.10.

4. Supporting Figures and Tables
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Figure S1. Calculated frontier molecular orbitals of PTD derivatives PTD-BnBr, PTD-
BnCl, PTD-BnCN, Br-PTD, CI-PTD, and CN-PTD in the gas phase.
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Figure S2. Luminescence photographs of PTD derivatives in dilute THF solutions (10~

M) at 77 K under and after removing the UV irradiation (365 nm).
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Figure S3. (a-b) Time-resolved fluorescence decay curves of PTD derivatives PTD-

BnBr, PTD-BnCl, PTD-BnCN, Br-PTD, CI-PTD, and CN-PTD in crystals.
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Figure S4. Calculated natural transition orbitals (NTOs) of S; and T, states of PTD-
BnBr, PTD-BnCl, PTD-BnCN, Br-PTD, CI-PTD, and CN-PTD in crystal phase.

Table S1. Calculated proportions of n—n* (0¢%) and n—n " (%) configurations in the
S; and T, states of PTD-BnBr, PTD-BnCl, PTD-BnCN, Br-PTD, CI-PTD, and CN-PTD

in the crystal state, respectively.

S [ T
PTD derivatives . .
% B% O 0% B%

PTD-BnBr 1.65% 98.35% 0.27% 99.73%
PTD-BnClI 2.03% 97.97% 0.26% 99.74%
PTD-BnCN 1.79% 98.21% 0.17% 99.83%
Br-PTD 13.39% 86.61% 3.05% 96.95%
CI-PTD 10.06% 89.94% 2.10% 97.90%
CN-PTD 1.79% 98.21% O 0.25% 99.75%




Table S2. Single crystal data of compounds PTD-BnBr, PTD-BnCl, PTD-BnCN, Br-

PTD, CI-PTD and CN-PTD.
Name PTD-BnBr ~ PTD-BnCl ~ PTD-BnCN Br-PTD CI-PTD CN-PTD

Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic

Space group P2, P2i/n P2, P2i/n P2i/n P2i/c
a/A 8.3495(8) 5.6526(8) 18.334(4) 7.0974(6) 7.0938(7) 15.2781(10)
b/A 5.1564(4) 25.098(3) 5.0895(10)  21.6508(15)  21.7282(19) 6.7491(4)
c/A 18.3745(14)  11.1799(13) 18.931(4) 10.7738(8) 10.6282(9)  16.5330(10)
a/° 90 90 90 90 90 90
pre 102.763(8) 101.355(14) 117.16(3) 97.688(8) 97.716(9) 100.120(6)
y/° 90 90 90 90 90 90

Volume/A3 771.54(11) 1555.0(3) 1571.7(7) 1640.7(2) 1623.4(3) 1678.25(18)

V4 2 4 4 4 4 4
Peatcg/cm’ 1.568 1.366 1.312 1.794 1.631 1.541
wmm-! 2.668 0.249 0.082 4.947 2.703 2.460
F(000) 368.0 664.0 648.0 872.0 800.0 784.0
h, k, Imax 11,7,25 6,29, 13 21,5,22 8,25,12 8,25,12 18,8, 19
Nref 4242[2346] 2738 5203[2932] 2895 2865 2943

Tmin,Tmax  0.518,0.726  0.956,0.973  0.991,0.993 0.282,0.476  0.479,0.615  0.546, 0.744
R(reflections)  0.0443(2253) 0.0489(2106) 0.0583(2316) 0.0491(1991) 0.0579(1668) 0.0437(2068)
wR2(reflections) 0.0730(3448) 0.1058(2734) 0.0793(4800) 0.1024(2894) 0.0999(2865) 0.0865(2942)

Data completeness  1.47/0.81 0.999 1.64/0.92 1.000 1.000 1.000
Theta(max) 29.347 24.996 24.499 24.999 24.997 25.000
S 0.977 1.086 0.836 1.038 0.997 1.027

Npar 208 208 433 217 217 226

a) The single-crystal structures have been deposited at the Cambridge Crystallographic
Data Centre and allocated the deposition number: PTD-BnBr (2342466), PTD-BnCl
(2342465), PTD-BnCN (2342468), Br-PTD (2342463), CI-PTD (2342464), CN-PTD
(2342467).



90,
L0°L
viL
9l'L
FAWE

zTL
0g'L
zeL
peL
25L
s 2]
95’/
692

1e8—

8LL
oN....P

PRI == o
o = S0t
69°L
h/hw \fNO I
vLL

102

g8\ y

e HUJTS Lt

86 84 82 80 713 76 74 72 70

Chemical shift (ppm)

Zgg—————r26'L |

077

cLL
VoL

B So'L
o'l

BN MBN
_,mum/ L
£5'8” 00}

15 1.0 05 00

—rS0°C |

heoe |

90 85 80 75 70 65 60 55 50 45 40 35 3.0 25 2.0

Chemical shift (ppm)

Figure S5. 'H NMR spectrum of PTD-BnBr (CDCl;, 400 MHz).
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Figure S6. 3C NMR spectrum of PTD-BnBr (151 MHz, CDCls).
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Figure S11. '"H NMR spectrum of Br-PTD (CDCl3, 400 MHz).
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Figure S17.The ESI-HRMS spectrum of PTD-BnBr.
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Figure S18.The ESI-HRMS spectrum of PTD-BnCl.
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Figure S19. The ESI-HRMS spectrum of PTD-BnCN.
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Figure S20. The ESI-HRMS spectrum of Br-PTD.
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Figure S21. The ESI-HRMS spectrum of CI-PTD.
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Figure S22. The ESI-HRMS spectrum of CN-PTD.
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Figure S23. High-performance liquid chromatography diagram of PTD-BnBr.

Figure S24. High-performance liquid chromatography diagram of PTD-BnCl.
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Figure S25. High-performance liquid chromatography diagram of PTD-BnCN.

Figure S26. High-performance liquid chromatography diagram of Br-PTD.
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Figure S28. High-performance liquid chromatography diagram of CN-PTD.
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