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Methods

General Methods: 1H NMR spectra were recorded on Bruker 400MHz NMR 

spectrometer. Electrospray ionization mass spectra (ESI-MS) were performed in 

negative ion mode on Bruker Apex IV Fourier transform ion cyclotron resonance mass 

spectrometer. Elemental analyses were conducted on a VARIO elemental analyzer 

from Elementar Analysensysteme GmbH.

Photophysical Measurements: Photophysical measurements were conducted in a 

nitrogen condition. Ultraviolet-visible absorption spectra were measured by Shimadzu 

UV-3600Plus UV-VIS-NIR spectrometer. Excitation and emission spectra were 

recorded on Edinburgh FLS980 fluorescence spectrophotometer. Luminescence decay 

lifetimes were obtained on a single photon counting spectrometer from Edinburgh 

FLS980 with laser as the excitation source. The data were analyzed by tail fit of the 

decay profile using a software package provided by Edinburgh Instruments. Absolute 

photoluminescence quantum yields were measured using Hamamatsu C9920-02 PL 

quantum yield measurement system with integrating sphere.

Single Crystal Structure Measurements: The single crystal X-ray diffraction (XRD) 

data were collected on Rigaku Mercury CCD diffractometer. The radiation used in the 

XRD analysis is the graphite-mon chromated Mo Kα emission line (λ= 0.71069 Å). 

XRD data were collected by using the CrystalClear software. Structural refinement was 

conducted with SHELXL-2014/7 software.

Thermal Stability Measurement: Thermal gravimetric analysis (TGA) was carried 

out on a Q600SDT instrument at an elevation temperature rate of 10 °C min-1 under 

100 mL min-1 nitrogen flow.

Cyclic Voltammetry (CV) Measurement: CV was carried out under inert atmosphere 

protection in dichloromethane solution with a CHI voltammetric analyzer. 

Tetrabutylammonium hexafluorophosphate (TBAPF6, 0.1 M) was used as the 

supporting electrolyte. The conventional three-electrode configuration consists of a 

platinum working electrode, a platinum wire auxiliary electrode, and an Ag/AgCl wire 

pseudo-reference electrode with ferrocene as the external standard. Cyclic 

voltammogram was obtained at a scan rate of 100 mV s-1.



OLEDs Fabrication and Measurements: Indium tin oxide (ITO) patterned anode was 

commercially available with a sheet resistance of 14 Ω square-1 and a thickness of 80 

nm. ITO substrates were cleaned with deionized water and ethanol. The organic and 

metal layers were deposited in different vacuum chambers with a base pressure better 

than 1×10-4 Pa. The active area for each device is 4 mm2. All electric testing and optical 

measurements were performed under ambient conditions with encapsulation of devices 

in a glovebox. The electroluminescence spectra, current density-voltage-luminance, 

and EQE characteristics were measured by computer controlled Keithley 2400 source 

meter and absolute EQE measurement system (C9920-12) with photonic multichannel 

analyzer (PMA-12, Hamamatsu Photonics).

Experimental Section

  All chemical reagents used in the synthesis process were commercially available and 

were used as received unless otherwise mentioned. 3-ethyl-1H-pyrazole, 3-cyclohexyl-

1H-pyrazole and 3-(adamantan-1-yl)-1H-pyrazole were synthesized according as 

reported methods1-3.

Synthesis of ligands

Synthesis of KTpEt: KBH4 (0.85 g, 16 mmol) and 3-ethyl-1H-pyrazole (5.00 g, 52.0 

mmol) were mixed in a 50 mL flask, and the mixture was heated slowly to 190 ℃ under 

nitrogen atmosphere until 3 equiv. of H2 evolved. After cooling down, the resulting 

solid was loaded into a thermal sublimator. With a gradient temperature of 260-120 ℃ 

and a pressure of ~ 8 Pa, 3.78 g KTpEt was obtained as white powder. Yield: 71%. 1H 

NMR (DMSO-d6): δ 7.15-7.13 (3H, d), 5.78-5.76 (3H, d), 2.51-2.44 (6H, q), 1.15-1.09 

(9H, t). ESI-MS negative: calcd. for C15H22BN6
- 297.20, found 297.20.

Synthesis of KTpiPr: Similarly to that of KTpEt, instead of KBH4 (0.39 g, 7.2 mmol) 

and 3-isopropyl-1H-pyrazole (2.78 g, 25.2 mmol) were used. With a gradient 

temperature of 260-120 ℃ and a pressure of ~ 8 Pa, 1.75 g KTpiPr was obtained as 

white powder. Yield: 64%. 1H NMR (DMSO-d6): δ 7.12-7.09 (3H, d), 5.80-5.77 (3H, 

d), 2.88-2.77 (3H, m), 1.17-1.03 (18H, d). ESI-MS negative: calcd. for C18H28BN6
- 

339.25, found 339.25.



Synthesis of KTpCy: KBH4 (0.38 g, 7.0 mmol) and 3-cyclohexyl-1H-pyrazole (4.00 

g, 26.6 mmol) were mixed in a 50 mL flask, and the mixture was heated slowly to 200 

℃ under nitrogen atmosphere until 3 equiv. of H2 evolved. Then, toluene (15 mL) was 

added to avoid the aggregation of product. The resulting solid was filtered, washed with 

hexane, and dried under vacuum. 2.33 g KTpCy was obtained as white powder. Yield: 

66%. 1H NMR (DMSO-d6): δ 7.11-7.05 (3H, d), 5.79-5.71 (3H, d), 2.54-2.42 (3H, m), 

1.92-1.78 (6H, m), 1.77-1.59 (9H, m) .1.38-1.11 (15H, m). ESI-MS negative: calcd. for 

C27H40BN6
- 459.34, found 459.34.

Synthesis of KTptBu: Similarly to that of KTpEt, instead of KBH4 (0.29 g, 5.4 mmol) 

and 3-(tert-butyl)-1H-pyrazole (2.00 g, 16.1 mmol) were used. With a gradient 

temperature of 260-120 ℃ and a pressure of ~ 8 Pa, 1.58 g KTptBu was obtained as 

white powder. Yield: 70%. 1H NMR (DMSO-d6): δ 6.98-6.93 (3H, d), 5.84-5.77 (3H, 

d), 1.22-1.16 (27H, s). ESI-MS negative: calcd. for C21H34BN6
- 381.29, found 381.29.

Synthesis of KTpAd: Similarly to that of KTpCy, instead of KBH4 (0.23 g, 4.3 mmol) 

and 3-(adamantan-1-yl)-1H-pyrazole (3.00 g, 14.8 mmol) were used. 1.87 g KTpAd was 

obtained as white powder. Yield: 67%. 1H NMR (DMSO-d6): δ 6.96-6.91 (3H, d), 5.80-

5.75 (3H, d), 2.00-1.93 (9H, m), 1.87-1.81 (18H, m), 1.73-1.67 (18H, m). ESI-MS 

negative: calcd. for C39H52BN6
- 615.43, found 615.43.

Synthesis of Eu(II) complexes

Synthesis of Eu-Et: EuI2 (0.27 g, 0.67 mmol) and KTpEt (0.45 g, 1.3 mmol) were 

added to a 50 mL flask with 20 mL dry tetrahydrofuran in a glovebox. The mixture was 

stirred overnight at room temperature and then the solvent was removed under vacuum. 

The resulting solid was loaded into a thermal sublimator. With a gradient temperature 

of 170-100 ℃ and a pressure of ~ 10-4 Pa, 0.25 g Eu-Et was obtained as orange-yellow 

powder. Yield: 50%. Anal. calcd for C30H44B2EuN12: C 48.28, H 5.94, N 22.52; found: 

C 48.34, H 5.89, N 22.34.

Synthesis of Eu-iPr: Similarly to that of Eu-Et, instead of EuI2 (0.11 g, 0.27 mmol) 

and KTpiPr (0.20 g, 0.53 mmol) were used. With a gradient temperature of 170-120 ℃ 

and a pressure of ~ 10-4 Pa, 0.13 g Eu-iPr was obtained as yellow powder. Yield: 58%. 

Anal. calcd for C36H56B2EuN12: C 52.06, H 6.80, N 20.24; found: C 52.24, H 6.98, N 



19.97.

Synthesis of Eu-Cy: EuI2 (0.16 g, 0.39 mmol) and KTpCy (0.40 g, 0.80 mmol) were 

added to a 50 mL flask with 20 mL dry tetrahydrofuran in a glovebox. The mixture was 

stirred overnight at room temperature. After removing insoluble substance, the solvent 

was removed under vacuum. The resulting solid was recrystallized from n-hexane, 0.21 

g Eu-Cy was obtained as yellowish green powder. Yield: 50%. Anal. calcd for 

C54H80B2EuN12: C 60.57, H 7.53, N 15.70; found: C 60.60, H 7.61, N 15.72.

Synthesis of Eu-tBu: Similarly to that of Eu-Et, instead of EuI2 (0.48 g, 1.2 mmol) 

and KTptBu (1.00 g, 2.4 mmol) were used. With a gradient temperature of 180-120 ℃ 

and a pressure of ~ 10-4 Pa, 0.58 g Eu-tBu was obtained as pale green powder. Yield: 

54%. Anal. calcd for C42H68B2EuN12: C 55.15, H 7.49, N 18.38; found: C 55.20, H 

7.44, N 18.44.

Synthesis of Eu-Ad: Similarly to that of Eu-Cy, instead of EuI2 (0.31 g, 0.76 mmol) 

and KTpAd (0.50 g, 0.76 mmol) were used. 0.40 g Eu-Ad was obtained as pale green 

powder after recrystallization from n-hexane and tetrahydrofuran. Yield: 50%. Anal. 

calcd for C47H68BEuIN6O2: C 54.34, H 6.60, N 8.09; found: C 54.12, H 6.37, N 8.02.



Table S1 Crystallographic data for Eu(II) complexes.

Compound Eu-tBu Eu-Ad
Formula C42H68B2EuN12 C47H68BEuIN6O2

Mw 914.66 1038.74
Crystal system monoclinic monoclinic
Space group P21/c I2/a

a (Å) 11.0607(2) 27.6985(3)
b (Å) 21.0152(4) 15.4209(2)
c (Å) 20.7561(3) 21.5097(2)
α (°) 90 90
β (°) 99.181(2) 95.0190(10)
γ (°) 90 90

V (Å3) 4762.80(15) 9152.33(18)
Z 4 8

T (K) 180.00(10) 180.00(10)
θ range (°) 2.2230-28.3260 2.1400-29.1210

dcalc (g·cm-3) 1.276 1.508
F (000) 1908 4232

Crystal size (mm) 0.05×0.02×0.01 0.3×0.2×0.15
Absorp. coeff. (mm-

1) 1.358 2.089

-14 ≤ h ≤ 14 -37 ≤ h ≤ 35
Index range -28 ≤ k ≤ 28 -21 ≤ k ≤ 20

-28 ≤ l ≤ 27 -29 ≤ l ≤ 22
Reflns collected 35214 (Rint = 0.0293) 53504 (Rint = 0.0228)

Indep. reflns 12060 11615
Refns obs. [I > 2σ(I)] 9671 10486

data/restr/paras 12060/24/567 11615/0/523
GOF 1.036 1.044

R1/wR2 [I > 2σ(I)] 0.0318/0.0670 0.0207/0.0519
R1/wR2 (all data) 0.0472/0.0714 0.0244/0.0533

Largest diff.
peak & hole (e/Å3) 1.026/-0.506 1.278/-0.762



Table S2 The selected bond lengths of Eu-tBu, Eu-Ad and Eu-Et.

Eu-tBu Bond length/Å Eu-Ad Bond length/Å Eu-Et Bond length/Å

Eu-N1 2.595 Eu-N1 2.581 Eu-N1 2.598

Eu-N2 2.644 Eu-N2 2.648 Eu-N2 2.576

Eu-N3 2.623 Eu-N3 2.633 Eu-N3 2.617

Eu-N4 2.650 Eu-I 3.207 Eu-N4 2.585

Eu-N5 2.697 Eu-O1 2.648 Eu-N5 2.589

- - Eu-O2 2.651 Eu-N6 2.612

(b)(a)

Fig. S1 (a) The coordination model, and (b) coordination polyhedron of Eu-Et.
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Fig. S2 The emission spectra of Eu(II) complexes in solid powder under the excitation 

of 280 nm.
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Fig. S3 The lifetime fitting curves of Eu-Et and Eu-iPr on FLS980.

Table S1 The original PLQY values of Eu(II) complexes during the two measurements.

Complex Solid Solution

Eu-Et 31.9% 32.2% 4.98% 4.93%

Eu-iPr 16.9% 17.0% 10.3% 10.3%

Eu-Cy 82.8% 83.0% 1.63% 1.65%

Eu-tBu 95.5% 95.4% 89.2% 89.1%

Eu-Ad 98.1% 97.7% 58.0% 57.9%
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Fig. S4 Absorption spectra of Eu(II) complexes in dichloromethane solutions (10-3 M).
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Fig. S5 Emission spectra of Eu(II) complexes in dichloromethane solutions (10-3 M). 

The excitation wavelengths for Eu-Et, Eu-iPr, Eu-Cy, Eu-tBu and Eu-Ad are 400, 400, 

400, 360 and 340 nm, respectively.
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Fig. S6 Excitation spectra of Eu(II) complexes in dichloromethane solutions (10-3 M). 

The detecting wavelengths for Eu-Et, Eu-iPr, Eu-Cy, Eu-tBu and Eu-Ad are 590, 560, 

570, 480 and 480 nm, respectively.
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Fig. S7 Decay spectra of Eu(II) complexes in dichloromethane solutions (10-3 M). 

The excitation wavelength is 405 nm, and the detecting wavelengths for Eu-Et, Eu-iPr, 

Eu-Cy, Eu-tBu and Eu-Ad are 590, 560, 530, 480 and 470 nm, respectively.
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Fig. S8 Thermogravimetric analysis of Eu-tBu.
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Fig. S9 Cyclic voltammetry curve of Eu-tBu recorder in dichloromethane with 

ferrocene as an internal standard.
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