Supporting information

Band alignment of TiO$_2$ through controlling Cl content for high-efficiency perovskite solar cells

Long Ji, Ting Zhang, Shibin Li

School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China

*Corresponding author. E-mail: shibinli@uestc.edu.cn.
Figure S1 Diagram of TiO$_2$ preparation process

Figure S2 TiO$_2$ absorption and energy band changes at different growth times. (a) TiO$_2$ absorption plots at different growth times. (b) TiO$_2$ Tauc-plot plots with different growth times.
Figure S3 XPS test diagram of TiO$_2$ surface with different growth time. (a) 1.5 h. (b) 1+1 h.

Figure S4 The electron mobility of TiO$_2$ was evaluated using the SCLC model.
Figure S5 SEM images of TiO$_2$ surface at different growth times. (a) 1 h. (b) 1+0.5 h. (c) 1.5 h. (d) 1+1 h.

Figure S6 SEM images of TiO$_2$ growing at different times. (a) 1 h. (b) 1+0.5 h. (c) 1.5 h. (d) 1+1 h.
Figure S7 PH value of TiO$_2$ solution grown at different times

Table S1 Average carrier lifetime of perovskite films prepared on 1 h and 1+0.5 h TiO$_2$ films

<table>
<thead>
<tr>
<th>Growth time</th>
<th>τ_1/ns (A_1)</th>
<th>τ_2/ns (A_2)</th>
<th>τ_{ave}/ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 h</td>
<td>92.44 (0.092)</td>
<td>890.62 (0.876)</td>
<td>882.01</td>
</tr>
<tr>
<td>1+0.5 h</td>
<td>83.63 (0.151)</td>
<td>629.33 (0.799)</td>
<td>615.96</td>
</tr>
</tbody>
</table>