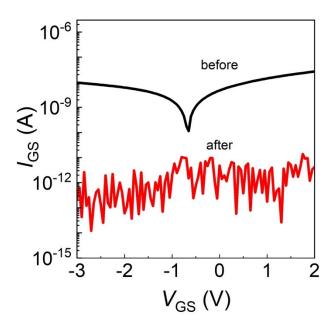
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Material

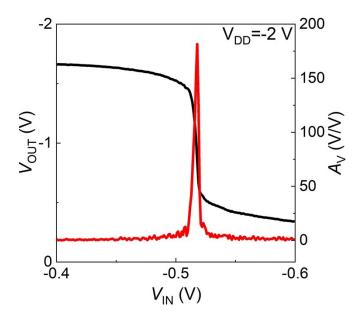
Low-Voltage Polymer Monolayer Transistors for High-Gain Unipolar and Complementary Logic Inverters

Miao Cheng^{a,b†}, Yanqin Zhang^{a†}, Lei Zheng^{a†}, Jianwei Zhang^c, Yifan Xie^a, Qingqing Jin^a, Yue Tian^a, Jinyao Wang^a, Hongmei Xiao^d, Chunmeng Dou^a, Zhenzhong Yang^c, Mengmeng Li^{a,b*}, Ling Li^a, Ming Liu^a

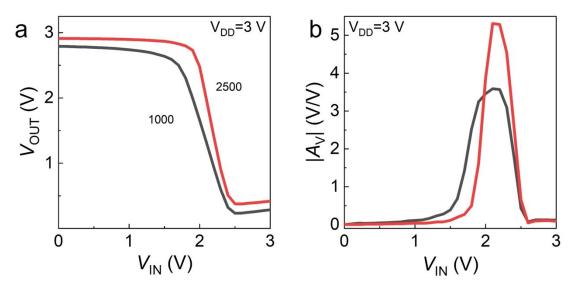
^a-Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.


^{b.}University of Chinese Academy of Sciences, 100049 Beijing, China.

^{c.}Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, 200241 Shanghai, China.


^d·Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[†]Contributed equally to this work.


^{*}Email: limengmeng@ime.ac.cn

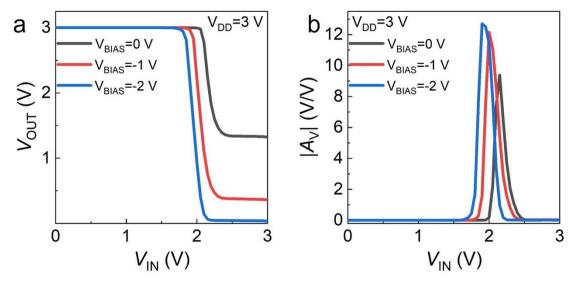

Figure S1 The gate leakage currents (I_{GS}) of polymer monolayer TFTs before and after patterning using the sacrificial layer strategy.

Figure S2 Input-output characteristics and voltage gain of zero- $V_{\rm GS}$ -load inverter based on polymer monolayer TFTs at $V_{\rm DD}$ = -2 V.

Figure S3 Influence of channel width of driver transistor on the performance of diode-load inverters. The channel width of driver transistor is 1000 and 2500 μ m in this figure and 5000 μ m in Fig. 4b.

Figure S4 Influence of channel width of bias voltage (V_{BIAS}) on the performance of pseudo-E inverters. The bias voltage is -1 and -2 V in this figure and -3 V in Fig. 4e.

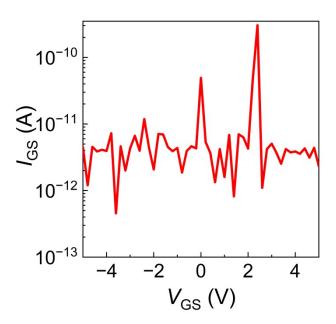


Figure S5 The gate leakage currents (IGS) of IGZO TFTs after patterning

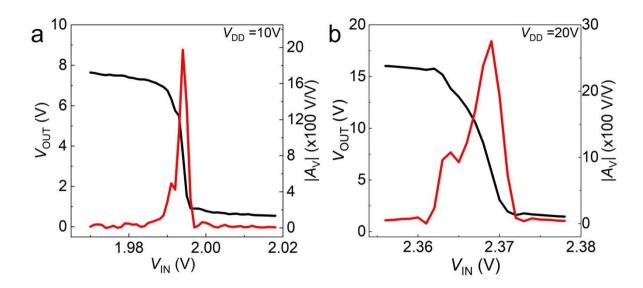


Figure S6 Input-output characteristics of complementary inverter at various $V_{\rm DD}$.

Table S1 Channel dimension of TFTs reported in this work.

channel dimension		channel length (μm)	channel width (μm)	number of TFTs
polymer monolayer TFT		20	1000	-
IGZO TFT		10	20	-
zero- V_{GS} -load	driver TFT	5	90	2
inverter	load TFT	5	180	2
diode-load inverter	driver TFT	5	5000	2
	load TFT	5	20	
Pseudo-E inverter	driver TFT	5	5000	4
	load TFT	5	20	