Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

## Variation in the Zero-Point Energy Difference via Electrostatic Interactions in Co(II)-Cltpy-based Spin-crossover Molecular Materials

Mousumi Dutta<sup>1</sup>, Ajana Dutta<sup>2#</sup>, Prabir Ghosh<sup>3,5#</sup>\*, Shubhankar Maiti<sup>1#</sup>, Laurentiu Stoleriu<sup>4</sup>,

Cristian Enachescu<sup>4</sup>, Pradip Chakraborty<sup>1</sup>\*

<sup>1</sup>Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

<sup>2</sup>Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

<sup>3</sup>Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-

721302, India

<sup>4</sup>Faculty of Physics, Al. I. Cuza University, 700506 Iasi, Romania

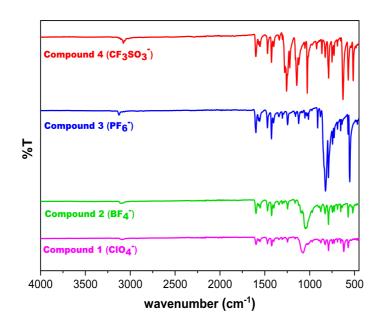
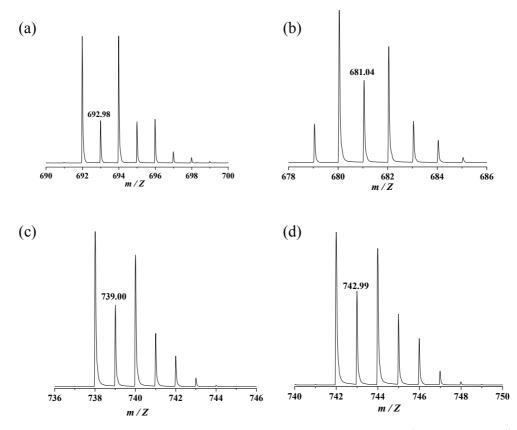
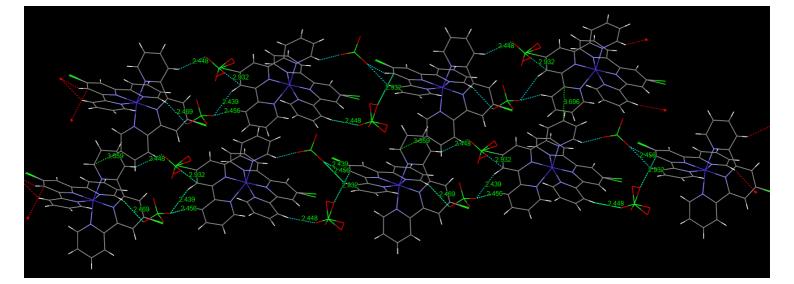
<sup>5</sup>Current address: Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and

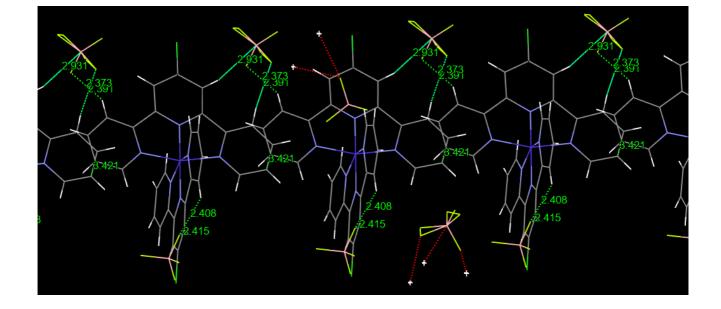
Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata-700091,

West Bengal, India

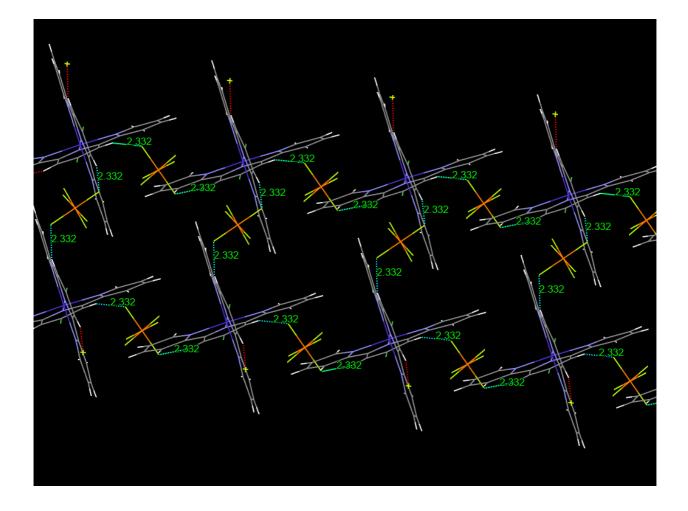
# Contributed equally to this work

\*Corresponding Author, E-mail: pradipc@chem.iitkgp.ac.in; prabir.chem@gmail.com

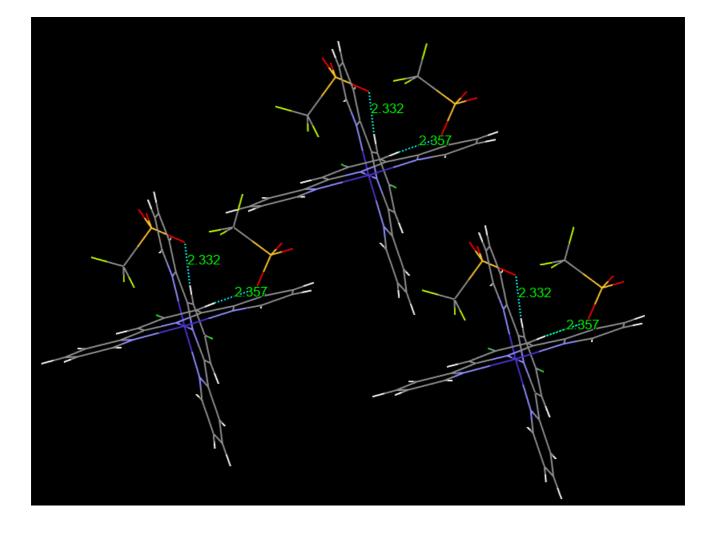






Figure S1: FTIR spectra of the as-synthesized compounds 1-4

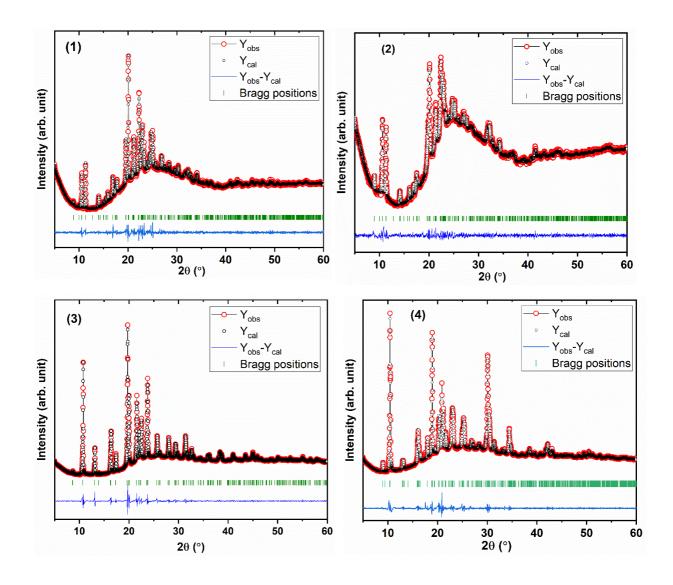



**Figure S2.** Experimental HRMS (+ve mode) spectra of (a) $\{1-ClO_4\}^+$ , (b)  $\{2-BF_4\}^+$ , (c)  $\{3-PF_6\}^+$  and (d)  $\{4-CF_3SO_3\}^+$  in CH<sub>3</sub>CN.




**Figure S3:** 1D chain-like stacked crystal packing pattern for compound 1 (i.e.,  $ClO_4$ ) upon growing the unit cell showing both intra-chain and inter-chain interactions (comparatively strong) with the relevant interaction lengths providing the strong effective crystal field strength around the Co(II)-spin-crossover centers.




**Figure S4:** 1D chain-like crystal packing pattern for compound 2 (i.e.,  $BF_4^-$ ) upon growing the unit cell showing only intra-chain interactions (comparatively weak) with the relevant interaction lengths providing the moderately weak effective crystal field strength around the Co(II)-spin-crossover centers.



**Figure S5:** 1D chain-like stacked crystal packing pattern for compound 3 (i.e.,  $PF_6^-$ ) upon growing the unit cell showing both intra-chain and inter-chain interactions (comparatively strong) with the relevant interaction lengths providing the strong effective crystal field strength around the Co(II)-spin-crossover centers.



**Figure S6:** Crystal packing pattern for compound 4 (i.e.,  $CF_3SO_3^-$ ) shows discrete individual molecular moieties without any intra- and inter-chain molecular interactions providing the weakest effective crystal field strength around the Co(II)-spin-crossover centers.



**Powder X-ray diffraction (PXRD):** 

**Figure S7**: PXRD Le Bail profile refinement of  $[Co(terpy-Cl)_2](ClO_4)_2$ , (1, top left);  $[Co(terpy-Cl)_2](BF_4)_2$ , (2, top right);  $[Co(terpy-Cl)_2](PF_6)_2$ , (3, bottom left); and  $[Co(terpy-Cl)_2](CF_3SO_3)_2$ , (4, bottom right) at room temperature.

## EPR spectroscopy:

| Compound | $g_z$ | $g_y$ | $g_x$ | $\langle g  angle^{a}$ | $\Delta g^b$ |
|----------|-------|-------|-------|------------------------|--------------|
| 1        | 2.303 | 2.040 | 1.958 | 2.078                  | 0.345        |
| 2        | 2.308 | 2.076 | 1.957 | 2.070                  | 0.351        |
| 3        | 2.247 | 1.997 | 1.953 | 2.119                  | 0.294        |
| 4        | 2.226 | 2.050 | 1.948 | 2.105                  | 0.278        |

**Table S1.** EPR data of compound 1-4 at 8 K.

 $(g)^{a} = ((1/3)(g_{z}^{2} + g_{y}^{2} + g_{x}^{2}))^{1/2}, \Delta g^{b} = g_{z} - g_{x}$