Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Fabrication of high performance memristor device by metallization of Ag⁺ inside a solution processed Li₅AlO₄ thin film

Subarna Pramanik, Rajarshi Chakraborty, Sobhan Hazra, Utkarsh Pandey, and Bhola Nath Pal*

School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.

*Corresponding author E-mail ID: <u>bnpal.mst@iitbhu.ac.in</u>

Figure S1. Cross-sectional SEM image for a) p⁺-Si/Ag(Ag⁺)-Al₂O₃.

Figure S2. a) HR-SEM image of the $Ag(Ag^+)-Al_2O_3$ thin film. b) EDX studies. c) Color mapping analysis of $Ag(Ag^+)-Al_2O_3$. d) $Ag(Ag^+)-Al_2O_3$ thin film image captured by TEM. e) Ag (NPs) particle size distribution inside an Al_2O_3 matrix as seen in a TEM image.

Figure S3. Current & Voltage curve of device p^+ -Si/Ag(Ag⁺)-Al₂O₃/Ag with concentrations of a)100 mM b) 200 mM and, c) 500 mM of Li₅AlO₄ ion conducting dielectric.

Figure S4. Current & Voltage curve of device p^+ -Si/Ag(Ag⁺)-Al₂O₃/Ag with top electrode area of a) 0.18 mm² b) 0.71 mm² and, c) 1.60 mm². Current vs. Voltage curve of p^+ -Si/Ag(Ag⁺)-Al₂O₃/Ag on a semi-logarithmic scale for continuous measurement with top electrode area d) 0.18 mm² and e) 0.71 mm².

Figure S5. a) Current vs. Voltage curve of p⁺-Si/Ag(Ag⁺)-Al₂O₃/Au on a semi-logarithmic scale,
b) Endurance property of p⁺-Si/Ag(Ag⁺)-Al₂O₃/Au for 20 cycles of continuous measurement.

Figure S6. a) Measured device-to-device variation of switching voltage distribution. b) Measured device-to-device variation of HRS and LRS distributions.

Figure S7. Pulse switching endurance for two resistance states of a) p^+ -Si/ (Ag/Ag⁺)-Al₂O₃/Ag, and b) p^+ -Si/Ag(Ag⁺)-Al₂O₃/Ag, respectively.

Figure S8. The statistic histograms of set and reset voltage over 100 consecutive cycles of p^+ -Si/(Ag/Ag^+)-Al₂O₃/Ag. Lines are obtained by fitting to the Gaussian distribution.

Figure S9. Current vs. Voltage curve for the device $p^+-Si/Ag(Ag^+)-Al_2O_3/Ag$ under hot air treatment.