Supporting Information

Two dimensional CuInP₂S₆/h-BN/MoTe₂ van der Waals

heterostructure phototransistor with double gate control

Sina Li^{1,3*},Junjie Zhou⁴,Jingxian Xiong⁶,Sixian Yang^{1,3},Jielian Zhang^{1,3},Weijun Fan^{5*},Jingbo Li^{2*} ¹School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P.R. China

²College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

³Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, P.R. China

⁴School of Materials and Energy, Guangdong University of Technology, Guangzhou

510006, P.R. China

⁵School of Electrical and Electronic Engineering, Nanyang Technological University

⁶Frontier Interdisciplinary College, National University of Defense Technology,

Changsha 410000, P.R. China.

Corresponding author: lisina@m.scnu.edu.cn, <u>EWJFan@ntu.edu.sg</u> and jbli@semi.ac.cn

Figure S1. (a)Band structures of bulk WSe₂ based on first-principles calculations.

Density functional theory (DFT) calculations are performed utilizing the Vienna Ab initio Simulation Package (VASP).^[1,2] The exchange-correlation function utilized in this investigation employs the Perdew-Burke-Ernzerhof (PBE)^[3] functional within the framework of the generalized gradient approximation (GGA)^[4].

- 1. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- 2. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
- 3. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

4. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

Figure S2. Along the line cutting the layered CIPS, a clear phase difference of 180 °was observed in each region.

Figure S3.(a)The pseudo-color scanning electron microscopy (SEM) image.(b)The energydispersive X-ray spectroscopy (EDS) energy spectrum of the device.

Figure S4.(a) The amplitude versus phase data of the MoTe2 film.(b)The piezoresponse force

microscopy (PFM) phase versus sample bias characteristics of the MoTe₂ film.

Figure S5.(a)The transfer of CIPS/hBN/MoTe₂ based on back gate in different bias from 0.5 to 1.25 V.(b)The output of CIPS/hBN/MoTe₂ in different back gate from -40 to 40V.

Figure S6.(a)The SS as function of positive of V_{TG} in different V_{SD} from 0.4 to 1 V.(b)The SS as function of reverse of V_{TG} in different V_{SD} from 0.4 to 1 V.(c)Transconductance(G_m) of the device as function of positive of V_{TG} in different V_{SD} from 0.4 to 1 V. (d)Transconductance(G_m) of the

device as function of reverse of V_{TG} in different V_{SD} from 0.4 to 1 V.

Figure S7.Transconductance of the device as function of V_{BG} at different V_{TG} (from -15 to 15V)

Figure S8. (a-b) The noise spectral densities of the CuInP₂S₆/hBN/MoTe₂ device recorded at V_{TG} =12V and V_{BG} =20V.

Table 1: Comparisons with other reported ferroelectric photodetectors in this work.

Device	Wavel ength (nm)	Bias (V)	Gat e(V)	R (mA/W)	D* (Jones)	τ (ms)	Refs.
P(VDF-	1060	1	0	16.4	1.94×10 ⁸	1.4/	[1]
TrFE)/MoTe2						1.3	
Gan/PZT/ITO	405	0	0	176	2.36×10^{-13}	0.52	[2]

					/0.5	
					8	
Cr/h DN/InSo 627	4	0	1.18 ×	1.74 imes 10	15	[3]
GI/II-BIN/IIISe 057		0	10-2		/5	
			1 11 × 10		120/	
GaN HEMT 365	7	-3	-	-	830	[4]
			5		0	
InGaZnO/HfZrO 395	2	_	7.1×10 ⁵	5.4×10^{12}	40/1	[5]
					0	
ZnO/PVDF 375	1	-	3.8×10^{5}	$4.4 imes 10^{15}$	280	[6]
CuInP ₂ S ₆ /hBN/Mo	1	10	6 76×103	$5.67 imes 10^{11}$	1.18	This
Te ₂ 055	1	12	0.70*10		/1.0	work

[1] Hai, H.; Wang, Xu.; Wang, P.; Wu, G.; Chen,Y.; Meng, C.; Liao,L.; Wang,J.;
Hu,W.;Ferroelectric polymer tuned two dimensional layered MoTe₂
photodetector. RSC Advances, 2016(6) 87416-87421.

[2]Chen, Z.; Lin, X.; Lin, S.; Ren, J.; Wan, L.; Peng, B.; Inverted-Structural Self-Powered Gan/PZT/ITO UV Photodetector Enhanced by Ferroelectric Modulation. *Adv. Electron. Mater.* **2024** (10) 2300588.

[3] Wang, B.; Ye, L.; Yin, H.; Ferroelectrically tuned tunneling photodetector based on graphene/h-BN/In₂Se₃ heterojunction[J].*Optical Materials*, **2024** (150)115264.

[4] Zhu,Y.; Li, Q.; Yang, Z.; Wang, C.; Wei; Z.; Research on photosensitive gate ferroelectric integrated GaN HEMT photodetector. *AIP Advances* **2021** (3) 035019.

[5] Y. Liu, Chen, W.; Zhao, L.; Guo, J.; Yang, C.; Wang, X.; Huang, W.; Ren, T.;
Xu,J.; Plasmon-Enhanced InGaZnO Ultraviolet Photodetectors Tuned by
Ferroelectric HfZrO. Adv. Electron. Mater. 2019(5) 1900588.

[6] Wang, P.; Wang, Y.; Ye, L.; Wu, M.; Xie, R.; Wang, X.; Chen, X.; Fan, Z.; Wang, J.; Hu, W.; Ferroelectric Localized Field-Enhanced ZnO Nanosheet Ultraviolet Photodetector with High Sensitivity and Low Dark Current. *Small* **2018** (14) 1800492.