Revisiting the Excited State Proton Transfer Dynamics in N-Oxide-Based Fluorophore: A Keto-Enol/Enolate Interplay to Detect Trace Water in Organic Solvents

Savita, Adarash Kumar Shukla, and Anupam Bhattacharya*

Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.

E-mail: anupam@hyderabad.bits-pilani.ac.in; Tel: +91-40-66303522.

Supporting Information

S.No.	Content	Page
1.	General procedure for UV and Fluorescence measurements	S5
2.	Synthetic route for HCQ	S5
3.	Figure S1(a). ¹ H NMR spectrum of HCQ in DMSO-d ₆	S6
4.	Figure S1(b). ¹³ C NMR spectrum of HCQ in DMSO-d ₆	S 7
5.	Figure S2(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in Toluene.	S8
6.	Figure S3(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in Dioxane.	S 8
7.	Figure S4(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in THF.	S 8
8.	Figure S5(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in CH ₂ Cl ₂ .	S9
9.	Figure S6(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in DMF (d) Absorbance spectra of HCQ with increasing concentration of HCQ in DMF	S9
10.	Figure S7(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in DMSO (d) Absorbance spectra of HCQ with increasing concentration of HCQ in DMSO	S10
11.	Figure S8(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in CH ₃ CN.	S10
12.	Figure S9(a). Normalised Absorption spectra; Normalised Excitation	S11

	spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c)	
	Scatter plot for representing emission wavelength at maximum Intensity at	
	varying excitation wavelength for HCQ (10 μ M) in MeOH.	
13.	Figure S10(a). Normalised Absorption spectra; Normalised Excitation	S11
	spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c)	
	Scatter plot for representing emission wavelength at maximum Intensity at	
	varying excitation wavelength for HCQ (10 μ M) in Water.	
14.	Figure S11. Emission spectra of HCQ (10 μ M) in different solvents with	S11
	increasing $E_T(30)$ /kcal mol ⁻¹ ; λ_{ex} =420 nm unless specified.	
15.	Figure S12. Emission spectra of HCQ (10 µM) in presence of TFA (100	S12
	μ M) in different solvents with increasing E _T (30)/kcal mol ⁻¹ ; λ_{ex} =420 nm.	
16.	Figure S13. Emission spectra of HCQ (10 µM) in presence of TEA (100	S12
	μ M) in different solvents with increasing E _T (30)/kcal mol ⁻¹ ; λ_{ex} =510 nm.	
17.	Figure S14. Emission spectra of HCQ (10 μ M) in presence of (a) TFA	S13
	(100 μ M) and (b) TEA (100 μ M) in in DMF with increasing λ_{ex} .	
18.	Figure S15. Emission spectra of HCQ (10 μ M) in presence of (a) TFA	S13
	(100 μ M) and (b) TEA (100 μ M) in DMSO with increasing λ_{ex} .	
19.	Figure S16. Emission spectra of HCQ (10 μ M) in presence of (a) TFA	S13
	(100 μ M) at λ_{ex} =420 nm and (b) TEA (100 μ M) at λ_{ex} =560 nm in DMSO.	
20.	Figure S17. Emission spectra of HCQ (10 μ M) in presence of (a) TFA	S14
	(100 μ M) at λ_{ex} =420 nm and (b) TEA (100 μ M) at λ_{ex} =480 nm in MeOH.	
21.	Figure S18. (a) Normalised Excitation spectra with varying λ_{em} (b)	S14
	Emission spectra with varying λ_{ex} and for HCQ (10 μ M) + TFA (100	
	μM) in MeOH.	
22.	Figure S19. (a) Normalised Excitation spectra with varying λ_{em} (b)	S14
	Emission spectra with varying λ_{ex} and for HCQ (10 μ M) + TEA (100	
	μM) in MeOH.	
23.	Figure S20. Emission spectra of HCQ (10 μ M) in presence of (a) TFA	S15
	(100 μ M) at λ_{ex} =420 nm and (b) TEA (100 μ M) at λ_{ex} =480 nm in Water.	
24.	Figure S21. Emission spectra of HCQ (10 μ M) in presence of (a) TFA	S15
	(100 μ M) with varying λ_{ex} (b) TEA and Na ₂ CO ₃ at λ_{ex} =480 nm	
25.	Quantum yield (QY) calculation	S16
26.	TCSPC Measurements	S16
27.	Table S1. Absorbance wavelength $\lambda_{abs}/\lambda_{ev}$. Emission wavelength λ_{em} .	S17
	Molar absorptivity (ϵ). Radiative rate constant for fluorescence k _f . Average	
	Radiative Lifetimes τ_{avg} , Radiative rate constant for fluorescence k_f , and	
	Rate constant determined for nonradiative deactivation k_{nr} and	
	Fluorescence Quantum Yields ϕ_F for HCQ in different solvents.	
28.	Table S2. The average lifetime components (τ) and their relative	S17
	amplitudes(A) for HCQ (10 μ M) at specified λ_{em} in different solvents	
	recorded using 405nm Laser Diode.	
29.	Table S3. The average lifetime components (τ) and their relative	S18
	amplitudes(A) for HCQ (10 μ M) at specified λ_{em} in different solvents	
	recorded using 440 nm Laser Diode.	
30.	Figure S22. Fluorescence intensity decays for HCQ (10 μ M) at specified	S18
	λ_{em} in different solvents recorded using 405 nm Laser Diode.	

31.	Figure S23. Fluorescence intensity decays for HCQ (10 μ M) at specified	S19
	$\lambda_{\rm em}$ in different solvents recorded using 440 nm Laser Diode.	~ • •
32.	Table S4. The average lifetime components (τ) and their relative	S20
	amplitudes(A) for HCQ (10 μ M) with TFA (100 μ M) at specified λ_{em} in	
	different solvents recorded using 405 nm Laser Diode.	
33.	Figure S24. Fluorescence intensity decays for HCQ (10 μ M) with TFA	S20
	(100 μ M) at specified λ_{em} in different solvents recorded using 405 nm	
	Laser Diode.	
34.	Table S5. The average lifetime components (τ) and their relative	S21
	amplitudes(A) for HCQ (10 μ M) with TEA (100 μ M) at specified λ_{em} in	
	different solvents recorded using 510 nm Laser Diode.	
35.	Figure S25. Fluorescence intensity decays for HCQ (10 μ M) with TEA	S21
	(100 μ M) at specified λ_{em} in different solvents recorded using 510 nm	
	Laser Diode.	
36.	Karl Fischer Measurements and Sample preparation	S22
37.	Figure. S26 (a) Fluorescence emission spectra (b) Scatter plot at A_{500}/A_{412}	S23
	for HCQ (10 μ M) with increasing percentage of water (0-5.2%) in	
	Dioxane.	
38.	Figure S27. (a) Fluorescence emission spectra (b) Scatter plot at I_{580}/I_{500}	S23
	for HCQ (10 μ M))+TFA (100 μ M) with increasing percentage of water(0-	
	3%) in Dioxane.	
39.	Table S6. Tabular column depicting titration of water with HCQ using (10)	S24
	$\mu M)$ Fluorescence (at $I_{580}/I_{500})$, Absorbance(A_{500}/A_{412}) and Karl fischer	
	(without HCQ) in Dioxane.	
40.	Figure S28. (a) Fluorescence emission spectra (b) Scatter plot at A_{500}/A_{412}	S25
	for HCQ (10 μ M) with increasing percentage of water (0-5.2%) in THF.	
41.	Figure S29. (a) Fluorescence emission spectra (b) Scatter plot at I_{580}/I_{500}	S25
	for HCQ (10 μ M) +TFA (100 μ M) with increasing percentage of water (0-	
10	3%) in THF.	GA (
42.	Table S7. Tabular column depicting titration of water with HCQ using (10	S26
	μ M) Fluorescence (at I ₅₉₀ /I ₅₀₃), Absorbance(A ₅₁₉ /A ₄₁₅) and Karl fischer	
12	(without HCQ) in THF.	
43.	Figure S30. (a) Fluorescence emission spectra (b) Scatter plot at	S27
	A_{560nm}/A_{417nm} for HCQ (10 µM) with increasing percentage of water (0-	
	5.2%) in DMSU.	0.07
44.	Table S8. Tabular column depicting fitration of water with HCQ using (10)	S27
	μ M), Absorbance(A _{560nm} /A _{417nm}) and Karl fischer (without HCQ) in	
15	DIMSU. E : (z) Elements in martin (b) Souther all that	C 20
43.	Figure S51. (a) Fluorescence emission spectra (b) Scatter plot at $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$	528
	$1_{630}/1_{500}$ for HCQ (10 μ M) +1FA (100 μ M) with increasing percentage of	
16	Table SQ Tabular column denicting titration of water with UCO using (10	528
+0.	1 abid 55. Labulat column depicting unation of water with ΠCQ using (10 μM). Absorbance(Leas/Leas) and Karl fischer (without ΠCQ) in CH CN	520
17	Figure S32 (a) Eluorescence emission spectra (b) Scatter plot at I/I at 550	\$20
+/.	r_1 gure 552. (a) r norescence emission spectra (b) scatter plot at μ_0 at 550 nm for HCO (10 µM) +TEA (100 µM) with increasing percentage of water	527
	(0.3%) in CH ₂ CN	
48	Table S10 Tabular column denicting titration of water with HCO using	\$20
-10.	(10 μ M) Fluorescence(I/I ₀) at 550 nm and Karl fischer (without HCO) in	527
	(10 million interest in the second of the se	

	MeOH.	
49.	Figure S33. UV-visible spectrum for HCQ (10 μ M) with increasing water concentration in CH ₃ CN.	S30
50.	Calculation of LOD and LOQ	S30
51.	Figure S34. Labelled ORTEP structures of ACQ and HCQ	S30
52.	Table S11. Torsion angles for ACQ and HCQ	S31
53.	Figure S35. Crystal packing indicating water involvement of water molecule in hydrogen bonding.	S31
54.	Figure S36. H-bonding in ACQ	S31
55.	Table S12. The S_0/S_1 transition energies, oscillator strengths of three enol (E), keto (K) and [RO ⁻ water] optimized in the S_0 electronic state, E*, K* and [RO ⁻ water] * optimized in the excited electronic state. The calculations were performed for molecule in acetonitrile using TD B3LYP/6-311+G(d,p) and solvent involved in the CPCM mode.	
56.	Figure S38. Ground state optimised structures of Enol and Keto forms of HCQ in acetonitrile.	S32
57.	Figure S38. Excited state optimised structures of Enol and Keto forms of HCQ in acetonitrile.	S32
58.	Figure S39. Ground state and Excited state optimised structures of [RO ⁻ water] form of HCQ in water depicting hydrogen bonding interaction.	S33
59.	Single Crystal Data for HCQ	S34- S36
60.	Table S12 . Tabular column for previously reported molecules depictingN-oxide ESIPT	S37
61.	Table S13. Tabular column for previously reported organic fluorophores utilised for water detection:	S38
62.	Table S14. Tabular column for recently reported N-oxide fluorophores andtheir application.	S39- S40
63.	References	S41- S43

Materials and Methods:

General procedure for UV and Fluorescence measurements:

All spectroscopic measurements were performed at room temperature. The protonated and deprotonated state was achieved by addition of 100 μ M TFA and TEA in the solvent of interest. All spectroscopic measurements were made using a cuvette with 1 cm optical path length. A fresh stock solution of the probe (10 mM) was prepared in DMSO for the experiments on each day. All the experiments were performed in triplicates. Dry solvents Dioxane, Toluene, THF, DMSO, CH₂Cl₂, DMF, MeOH, CH₃CN (SRL, 99% anhydrous, water content 0.05%) and TEA(Triethyl amine) and TFA (Trifluoro acetic acid) were used as received. Milli Q water was used as obtained from the Millipore water filtration system. Water content in solvents was also detected using the Karl Fischer Titrator. For the steady-state spectra, solutions with 10 μ M of HCQ in solvents were prepared unless specified. For all the fluorescence spectral measurements the slit width was kept 3 nm for both excitation and emission.

Synthetic route for HCQ:

Figure S1(a). ¹H NMR spectrum of HCQ in DMSO-d₆

Figure S1(b).¹³C NMR spectrum of HCQ in DMSO-d₆.

Figure S2(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in Toluene.

Figure S3(a). Normalised Absorption spectra; Normalised Excitation with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in Dioxane.

Figure S4(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in THF.

Figure S5(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in CH₂Cl₂.

Figure S6(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in DMF (d) Absorbance spectra of HCQ with increasing concentration of HCQ in DMF

Figure S7(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in DMSO (d) Absorbance spectra of HCQ with increasing concentration of HCQ in DMSO

Figure S8(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in CH₃CN.

Figure S9(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in MeOH.

Figure S10(a). Normalised Absorption spectra; Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and (c) Scatter plot for representing emission wavelength at maximum Intensity at varying excitation wavelength for HCQ (10 μ M) in Water.

Figure S11. Emission spectra of HCQ (10 μ M) in different solvents with increasing E_T(30)/kcal mol⁻¹; λ_{ex} =420 nm unless specified.

Figure S12. Emission spectra of HCQ (10 μ M) in the presence of TFA (100 μ M) in different solvents with increasing E_T (30)/kcal mol⁻¹; λ_{ex} =420 nm.

Figure S13. Emission spectra of HCQ (10 μ M) in presence of TEA (100 μ M) in different solvents with increasing E_T (30)/kcal mol⁻¹; λ_{ex} =520 nm.

Figure S14. Emission spectra of HCQ (10 μ M) in presence of (a) TFA (100 μ M) and (b) TEA (100 μ M) in in DMF with increasing λ_{ex} .

Figure S15. Emission spectra of HCQ (10 μ M) in presence of (a) TFA (100 μ M) and (b) TEA (100 μ M) in DMSO with increasing λ_{ex} .

Figure S16. Emission spectra of HCQ (10 μ M) in presence of (a) TFA (100 μ M) at λ_{ex} =420 nm and (b) TEA (100 μ M) at λ_{ex} =560 nm in DMSO.

Figure S17. Emission spectra of HCQ (10 μ M) in presence of (a) TFA (100 μ M) at λ_{ex} =420 nm and (b) TEA (100 μ M) at λ_{ex} =480 nm in MeOH.

Figure S18. (a) Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and for HCQ (10 μ M) + TFA (100 μ M) in MeOH.

Figure S19. (a) Normalised Excitation spectra with varying λ_{em} (b) Emission spectra with varying λ_{ex} and for HCQ (10 μ M) + TEA (100 μ M) in MeOH.

Figure S20. Emission spectra of HCQ (10 μ M) in presence of (a) TFA (100 μ M) at λ_{ex} =420 nm and (b) TFA (100 μ M) at λ_{ex} =480 nm in Water.

Figure S21. Emission spectra of HCQ (10 μ M) in presence of (a) TFA (100 μ M) with varying λ_{ex} (b) TEA and Na₂CO₃ at λ_{ex} =480 nm

Quantum yield (QY) calculation:

The fluorescence quantum yields were measured using as standards: Rhodamine 6G ($\Phi_R = 0.94$ in ethanol) and Quinine sulfate ($\Phi_R = 0.53$ in 0.1N H₂SO₄). ¹The optical density was kept below 0.15 for both sample and reference.

The quantum yield of the sample was calculated using

 $\Phi_{\rm F} = \Phi_{\rm R}^{*}({\rm I}/{\rm I}_{\rm R})^{*}({\rm A}_{\rm R}/{\rm A})^{*}({\rm n}^{2}/{\rm n}_{\rm R}^{2})$

- $\Phi_{\rm F} =$ is the quantum yield.
- $I = integrated intensity for sample and I_R = integrated intensity for Reference used.$
- A_R and A represent optical density for reference and sample.
- n and n_R is the refractive index of sample and reference respectively.

TCSPC Measurements:

Fluorescence decay measurements were conducted utilizing time-correlated single-photon counting. The experiments included measurements using three NanoLED at wavelengths of 405 nm. 440 nm and 510 nm. The fluorescence signals exhibited a peak of 10,000 counts. Fluorescence signals, at a specific wavelength (λ_{em}), were recorded at a magic angle of 54.7° polarization utilizing the Picosecond Photon Detection Module (PPD-850). The instrument response function (IRF) for all setups was determined using a Ludox solution. Decays were documented across wavelengths ranging from 500 to 650 nm based on sample's emission wavelength.

Decay analysis was carried out by using the EzTime decay analysis software. Analysis of the fluorescence decays employed a mono-exponential, bi-exponential and triexponential decay model, yielding goodness-of-fit parameters (χ^2) ranging between 0.9 and 1.2.

405 nm laser diode was used for studying normal form emission in dioxane, toluene, THF, CH_2Cl_2 , and CH_3CN , along with protonated forms of HCQ in all the solvents. 440 nm laser diode was employed to study the lifetime of HCQ in DMF, DMSO (as depicted from the excitation spectra), MeOH, and water. This was done because of the distinct change in absorbance spectra for water and methanol at 480 nm and the excitation spectral difference observed in DMSO. To obtain the lifetime of pure protonated and deprotonated forms Laser diodes with 405 nm and 510 nm excitation were employed because the absorbance value for the enol form and keto form are centered around ~420 nm and ~520 nm.

Table S1. Absorbance wavelength $\lambda_{abs}/\lambda_{ex}$, Emission wavelength λ_{em} , Molar absorptivity (ϵ), Radiative rate constant for fluorescence k_f , Average Radiative Lifetimes τ_{avg} , Radiative rate constant for fluorescence k_f , and Rate constant determined for nonradiative deactivation k_{nr} and Fluorescence Quantum Yields ϕ_F for HCQ in different solvents.

Solvent	λ_{abs}/λ_e (nm)	λ _{em} (nm)	Е (L mol ⁻¹ cm ⁻¹)	$ au_{avg}$ (ns)	$rac{k_{f^{(a)}}}{(10^{8} \text{ s}^{-1})}$	k _{nr} ^(b) (10 ⁸ s ⁻¹)	ф _F
Toluene	416	505	6975.35	0.542622	2.640	15.7881	0.1433#
Dioxane	412	501	8129.21	0.504892	0.2911	19.5150	$0.0147^{\#}$
THF	415	502	6850.34	0.483182	0.3518	20.3443	0.017#
CH ₂ Cl ₂	417	503	6365.06	0.497557	1.6802	18.4179	$0.0836^{\#}$
DMF	419,	643	4695.87	0.355117	0.3688	27.7908	0.0131*
	565 ^(c)		-				
DMSO	418	558	8078.24	0.307095	6.07629	26.4869	$0.1866^{\#}$
	567 ^(d)	640	-	1.32848	0.3071	7.22028	0.0408*
CH ₃ CN	412	506	6799.24	0.470105	0.2510	21.0208	$0.0118^{\#}$
MeOH	483	550	9190.2	1.63835	1.6840	4.41969	0.2759*
Water	485	597	7070.16	0.739173	2.7977	10.7309	0.2068*
^(a) $K_f = \Phi_F / \tau$	$;^{(b)} K_{nr} = ($	$1 - \Phi_F / \tau$	^{(c)(d)} Molar absor	ptivity for red	shifted band wa	as not determi	ined since

only blue shifted band is concentration dependent. *Rhodamine 6G was used as Reference Standard. # Quinine Sulphate was used as Reference standard.

Table S2. The average lifetime components (τ) and their relative amplitudes(A) for HCQ (10 μ M) at specified λ_{em} in different solvents recorded using 405nm Laser Diode.

Solvent	Emission wavelength	Average lifetime	χ²	$\tau_1(ns)$	A1(%)	$\tau_2(ns)$	A2 (%)	τ ₃ (ns)	A3 (%)
	(nm)	(ns)							
Toluene	505	0.542622	1.19	0.542622	100%	-	-	-	-
	578	0.616306	1.05	0.57899	91.12%	1.81985	8.88%	-	-
Dioxane	501	0.504892	1.16	0.461278	90.61%	5.77114	9.39%	-	-
	580	0.982192	1.11	0.547853	32.39%	1.44846	60.39%	7.22996	7.22%
THF	502	0.483182	1.19	0.430317	87.33%	3.1497	12.67%	-	-
	589	1.16696	1.08	1.09741	89.9%	2.67738	10.1%	-	-
CH ₂ Cl ₂	503	0.497557	1.06	0.471366	93.0%	1.89651	7.0%	-	-
	593	0.662016	1.18	0.662016	100 %	-	-	-	-
DMF	560	0.355117	1.13	0.31993	89.53%	5.9816	10.47%	-	-
	643	1.42492	1.05	1.42492	100%	-	-	-	-
DMSO	560	0.247467	1.08	0.215881	86.68%	5.20629	13.32%	-	-
	640	1.54665	1.16	0.816442	0.32%	1.55106	99.68%	-	-
CH ₃ CN	506	0.470105	1.19	0.438608	92.13%	2.93994	7.87%	-	-
	630	1.0418	1.03	0.793598	54.32%	1.65887	45.68%	-	-

 χ^2 =Goodness of fit parameter

Solvent	Emission wavelength (nm)	Average lifetime (ns)	χ^2	$\tau_1(ns)$	A1(%)	$\tau_2(ns)$	A2 (%)	τ ₃ (ns)	A3 (%)
DMF	560	0.646442	1.18	1.47391	11.7%	10.9861	49.14%	0.275248	39.16%
	643	1.48556	1.03	1.40204	93.34%	9.03655	6.66%	-	-
DMSO	560	0.307095	1.00	1.54159	10.9%	12.0639	25.62%	0.200582	63.47%
	640	1.32848	1.19	0.104494	1.66%	1.60851	95.04%	11.303	3.3%
MeOH	550	1.63835	1.19	3.65826	18.33%	10.7473	36.61%	0.856391	45.06%
	610	0.827696	1.16	0.46748	9.4%	0.840508	83.99%	8.38423	6.61%
Water	597	0.739173	1.06	0.739173	100%	-	-	-	-

Table S3. The average lifetime components (τ) and their relative amplitudes(A) for HCQ (10 μ M) at specified λ_{em} in different solvents recorded using 440 nm Laser Diode.

Note: The Lifetime Data for DMSO and DMF was determined using both 405 nm and 440 nm Laser diode due to the difference in their absorbance and excitation spectra.

Figure S22. Fluorescence intensity decays for HCQ (10 μ M) at specified λ_{em} in different solvents recorded using 405 nm Laser Diode.

Figure S23. Fluorescence intensity decays for HCQ (10 μ M) at specified λ_{em} in different solvents recorded using 440 nm Laser Diode.

Table S4. The average lifetime components (τ) and their relative amplitudes(A) for HCQ (10 μ M) with TFA (100 μ M) at specified λ_{em} in different solvents recorded using 405 nm Laser Diode.

Solvent	Emission wavelength	Average lifetime	χ^2	$\tau_1(ns)$	A1(%)	$\tau_2(ns)$	A2 (%)
	(nm)	(ns)					
Toluene	501	0.552895	1.14	0.552895	100%	-	-
Dioxane	500	0.439086	1.01	0.417861	93.85%	1.95729	6.15%
THF	502	0.48413	1.12	0.417821	83.55%	2.49936	16.45%
CH ₂ Cl ₂	503	0.437324	1.05	0.419131	94.91%	2.30037	5.09%
DMF	560	0.349951	1.20	0.316207	89.75%	5.33899	10.25%
	643	1.4007	0.99	0.741843	2.28%	1.43029	97.72%
DMSO	560	0.230704	1.16	0.213816	92.29%	4.269	7.71%
	640	1.53993	1.07	1.53993	100%	-	-
CH ₃ CN	507	0.485965	1.16	0.438568	88.36%	2.71022	11.64%
MeOH	610	0.842419	1.19	0.842419	100.0%	-	-
Water	597	0.74185	1.12	0.74185	100%	-	-

Figure S24. Fluorescence intensity decays for HCQ (10 μ M) with TFA (100 μ M) at specified λ_{em} in different solvents recorded using 405 nm Laser Diode.

Table S5. The average lifetime components (τ) and their relative amplitudes(A) for HCQ (10 μ M) with TEA (100 μ M) at specified λ_{em} in different solvents recorded using 510 nm Laser Diode.

Solvent	Emission wavelength (nm)	Average lifetime (ns)	χ^2	$\tau_1(ns)$	A1(%)	$\tau_2(ns)$	A2 (%)
Toluene	578	2.50547	1.009	2.50547	100%	-	
Dioxane	580	2.47924	1.06	2.47924	100%	-	-
THF	589	2.10209	1.21	1.88524	87.39%	10.3675	12.61%
CH ₂ Cl ₂	593	2.62595	1.18	2.62595	100%	-	-
DMF	640	1.46116	1.11	1.46116	100%	-	-
DMSO	640	1.61908	1.11	1.61908	100%	-	-
CH ₃ CN	630	1.69918	1.69	1.69918	100.0%	-	-
Water	597	0.749221	1.20	0.749221	100%	-	-

Figure S25. Fluorescence intensity decays for HCQ (10 μ M) with TEA (100 μ M) at specified λ_{em} in different solvents recorded using 510 nm Laser Diode.

Karl Fischer Measurements and Sample preparation:

Sample Preparation for Karl Fischer measurements was carried out by weighing 0.5 ml of dry solvent from the solvent bottle. All the measurements were carried out at room temperature.

- Titre mode was used to standardize the KF instrument. The KF values obtained for all the standardization procedures were in the range of 4 to 5.
- Blank mode was then used to determine the blank solvent moisture content.
- Using Sample mode, the moisture content was measured by addition of known percentage of water to the dry solvents and tabulated alongside the values as added for conducting the fluorescence and UV spectroscopy measurements.
- Similarly for unknown samples the moisture was determined and compared to the data obtained using fluorescence and UV from ratio of I/I_o and A/A_o respectively.
- The formula stored in the memory to find moisture is given below:

% Moistura -	Ep ml x KF Titre value (mg/ml)
70 Motsture –	Sample Wt. (gms) x 10

Where,

EP ml= End point in ml

Sample Wt. = Weight of sample taken in grams

KF Titre Value= Titre value of KF in mg/ml.

Water Detection:

Figure. S26 (a) Fluorescence emission spectra (b) Scatter plot at A_{500}/A_{412} for HCQ(10 μ M) with increasing percentage of water(0-5.2%) in Dioxane.

Figure S27. (a) Fluorescence emission spectra (b) Scatter plot at I_{580}/I_{500} for HCQ (10 μ M)+TFA (100 μ M) with increasing percentage of water(0-3%) in Dioxane.

%0 H₂O	I ₅₈₀ /I ₅₀₀ for Dioxane	% H ₂ O	A ₅₀₀ /A ₄₁₂ for Dioxane	% moisture from Karl Fischer Instrument
0	0.2129 (± 0.0025)	0	$0.0527 (\pm 0.0093)$	0.0150 (0%)
0.2	0.2381 (± 0.0070)	0.4	0.0987 (± 0.0150)	
0.4	0.2646 (± 0.0055)	0.8	0.1468 (± 0.0364)	
0.6	0.3012 (± 0.0134)	1.2	0.1901 (± 0.0603)	0.9523 (1%)
0.8	0.3391 (± 0.0137)	1.6	0.2281 (± 0.0839)	
1	0.3882 (± 0.0215)	2	0.3105 (± 0.0698)	_
1.2	0.4281 (± 0.0296)	2.4	$0.3510 (\pm 0.0867)$	1.8330 (2%)
1.4	$0.4734 (\pm 0.0277)$	2.8	$0.3872 (\pm 0.0691)$	-
1.6	0.5063 (± 0.0239)	3.2	0.4205 (± 0.0526)	
1.8	0.5595 (± 0.0231)	3.6	$0.4496 \ (\pm \ 0.0367)$	2.8578 (3%)
2	0.6050 (± 0.0169)	4	$0.4830 (\pm 0.0201)$	
2.2	0.6490 (± 0.0281)	4.4	$0.4997 (\pm 0.0362)$	
2.4	0.6808 (± 0.0193)	4.8	0.5645 (± 0.0332)	4.0451 (4%)
2.6	0.7234 (± 0.0159)	5.2	0.6770 (± 0.1238)	-
2.8	$0.7667 (\pm 0.0062)$	-		
3	0.8027 (± 0.0188)	-		4.9098 (5%)

Table S6. Tabular column depicting titration of water with HCQ using (10 μ M) Fluorescence (at I₅₈₀/I₅₀₀), Absorbance(A₅₀₀/A₄₁₂) and Karl Fischer (without HCQ) in Dioxane.

Determination of % water for unknown sample in Dioxane:

 $I_{580} = 188250, I_{500} = 320510$

 $I_{580}/I_{500} = 0.5873$ ------1.8-2% from Fluorescence spectroscopy

 $A_{500}\!=\!0.03698 \quad A_{412}\!=\!0.05256$

 $A_{500}/A_{412} = 0.7035$ ----->5.2% from UV spectroscopy

Percentage moisture detected using Karl Fischer: 1.5946%

Figure S28. (a) Fluorescence emission spectra (b) Scatter plot at A_{500}/A_{412} for HCQ (10 μ M) with increasing percentage of water (0-5.2%) in THF.

Figure S29. (a) Fluorescence emission spectra **(b)** Scatter plot at I_{580}/I_{500} for HCQ (10 μ M) +TFA (100 μ M) with increasing percentage of water (0-3%) in THF.

% H ₂ O	I ₅₉₀ /I ₅₀₃ for THF	% H ₂ O	A ₅₁₉ /A ₄₁₅ for THF	Standard Deviation	% moisture from Karl Fischer Instrument
0	0.2222 (± 0.0256)	0	0.0744 ((± 0.0143)	0.1150
0.2	$0.2934 (\pm 0.0275)$	0.4	0.1879 ((± 0.0246)	
0.4	$0.3752 (\pm 0.0178)$	0.8	0.2577 ((± 0.0293)	
0.6	0.4730 (± 0.0154)	1.2	0.2990 ((± 0.0433)	1.1732(1%)
0.8	$0.5567 (\pm 0.0087)$	1.6	0.3461 ((± 0.0623)	
1	0.6382 (± 0.0112)	2	0.3825 ((± 0.0678)	
1.2	0.7026 (± 0.0132)	2.4	0.4280 ((± 0.0995)	2.1030 (2%)
1.4	0.7665 (± 0.0231)	2.8	0.4749 ((± 0.0910)	
1.6	0.8096 (± 0.0402)	3.2	0.5031 ((± 0.0926)	
1.8	0.8612 (± 0.0499)	3.6	0.5822 ((± 0.0463)	3.1660 (3%)
2	0.8942 (± 0.0459)	4	0.6196 ((± 0.0436)	
2.2	0.9228 (± 0.0596)	4.4	0.7057 ((± 0.1625)	
2.4	0.9475 (± 0.0713)	4.8	0.8766 ((± 0.1512)	4.1635 (4%)
2.6	0.9703 (± 0.0604)	5.2	0.9307 ((± 0.1481)	
2.8	0.9773 (± 0.0536)	-	-	-	
3	$1.0259 (\pm 0.0952)$	-	-	-	5.2034 (5%)

Table S7. Tabular column depicting titration of water with HCQ using (10 μ M) Fluorescence (at I₅₉₀/I₅₀₃), Absorbance(A₅₁₉/A₄₁₅) and Karl Fischer (without HCQ) in THF.

Determination of % water for unknown sample in THF:

I₅₉₀= 207060, **I**₅₀₃= 299410

 $I_{590}/I_{503} = 0.6915$ ------1-1.2% from Fluorescence spectroscopy

 $A_{519} = 0.01702 A_{415} = 0.07129$

A₅₁₉/A₄₁₅=0.2387 -----0.4-0.8% from UV spectroscopy

Percentage moisture detected using Karl Fischer: 1.4348%

Figure S30. (a) Fluorescence emission spectra **(b)** Scatter plot at A_{560nm}/A_{417nm} for HCQ (10 μ M) with increasing percentage of water (0-5.2%) in DMSO.

Table	S8 .	Tabular	column	depicting	titration	of	water	with	HCQ	using	(10	μΜ),
Absorb	ance	(A_{560nm}/A)	_{417nm}) and	l Karl Fiscl	her (witho	ut H	ICQ) in	DMS	О.			

% H ₂ O	A _{560nm} /A _{417nm} for DMSO	Standard Deviation	% moisture from Karl Fischer Instrument
0	0.2928 (±	0.0685)	0.0644
0.4	0.4137 (±	0.0957)	
0.8	0.5107 (±	0.0698)	
1.2	0.5598 (±	0.0738)	0.9445 (1%)
1.6	0.7032 (±	0.1217)	
2	0.8931 (±	0.1662)	
2.4	1.0052 (±	0.2236)	1.8418 (2%)
2.8	1.0769 (±	0.2093)	
3.2	1.1832 (±	0.2739)	2.7368 (3%)
3.6	1.3007 (±	0.3100)	
4	1.3990 (±	0.3286)	
4.4	1.5586 (±	0.3436)	3.4229 (4%)
4.8	1.6734 (±	0.3229)	
5.2	1.8506 (±	0.3319)	4.2867 (5%)

Determination of % water for unknown sample in DMSO:

 $A_{560nm} = 0.0442733, A_{417nm} = 0.0576709$

A_{560nm}/A_{417nm}=0.76768-----1.6-2% from UV spectroscopy

Percentage moisture detected using Karl Fischer: 2.2800%

Figure S31. (a) Fluorescence emission spectra (b) Scatter plot at I_{630}/I_{500} for HCQ (10 μ M) +TFA (100 μ M) with increasing percentage of water (0-3%) in CH₃CN.

Table	S9 .	Tabular	column	depicting	titration	of	water	with	HCQ	using	(10	μΜ),
Absorb	ance	(I_{630}/I_{500}) a	nd Karl I	Fischer (wit	thout HCC	2) ir	n CH ₃ C	N.				

% H ₂ O	I ₆₃₀ /I ₅₀₀ for CH ₃ CN	% moisture from Karl Fischer Instrument
0	0.0756 (± 0.0127)	(0.0894)
0.2	$0.0856 (\pm 0.0095)$	
0.4	$0.1110 (\pm 0.0082)$	
0.6	$0.1419 (\pm 0.0111)$	
0.8	0.1819 (± 0.0113)	1.0732(1%)
1	0.2269 (±0.0158)	
1.2	0.2765 (± 0.0158)	
1.4	0.3444 (± 0.0142)	
1.6	0.4111 (± 0.0193)	1.9304(2%)
1.8	0.4778 (± 0.0337)	
2	0.5494 (± 0.0372)	
2.2	$0.6315 (\pm 0.0433)$	
2.4	0.6975 (± 0.0426)	3.0929(3%)
2.6	0.7718 (± 0.0405)	
2.8	$0.8472 (\pm 0.0480)$	
3	0.9316 (± 0.0610)	

Determination of % water for unknown sample in CH₃CN:

 I_{630} =152030, I_{500} = 197190

 $I_{630}/I_{500}=2.6$ % ------from fluorescence spectroscopy

Percentage moisture detected using Karl Fischer: 2.6295%

MeOH

Figure S32. (a) Fluorescence emission spectra **(b)** Scatter plot at I/I_0 at 550 nm for HCQ (10 μ M) with increasing percentage of water (0-3%) in MeOH.

Table S10. Tabular column depicting titration of water with HCQ using (10 μ M), Fluorescence(I/I₀) at 550 nm and Karl Fischer (without HCQ) in MeOH.

% H ₂ O	I/I ₀ for MeOH at 549 nm	% moisture from Karl Fischer Instrument
0	1(± 0)	0.0863
0.2	0.9750 (± 0.0247)	
0.4	0.9421 (± 0.0256)	_
0.6	$0.9189 (\pm 0.0268)$	
0.8	0.8872 (± 0.0234)	
1	$0.8614 (\pm 0.0274)$	1.2485(1%)
1.2	$0.8348 \ (\pm \ 0.0204)$	
1.4	$0.8126 \ (\pm \ 0.0257)$	
1.6	$0.7940 \ (\pm \ 0.0192)$	
1.8	$0.7747 (\pm 0.0226)$	
2	$0.7536 (\pm 0.0184)$	2.4013(2%)
2.2	$0.7292 \ (\pm \ 0.0154)$	
2.4	0.7033 (± 0.0148)	
2.6	0.6785 (± 0.0117)	3.4598 (3%)
2.8	0.6421 (± 0.0207)	
3	$0.6208 \ (\pm \ 0.0250)$	

Determination of % water for unknown sample in MeOH:

I=837730, I₀= 910530

 I/I_0 at 550 nm =0.92004-----0.6% from Fluorescence spectroscopy

Percentage moisture detected using Karl Fischer: 0.4090%

Figure S33. UV-visible spectrum for HCQ (10 μ M) with increasing water concentration in CH₃CN.

Calculation of LOD and LOQ:

Limit of Detection (LOD): was calculated using the formula: $LOD=3 \times \sigma/K$ and Limit of Quantification (LOQ) is calculated using $10 \times \sigma/K$. Where σ is Standard Deviation of the response and K= Slope of the calibration curve

In both UV and fluorescence detection, the calibration curve was constructed by measuring the absorbance or fluorescence intensity of known concentrations of water (0-5.2% for UV and 0-3% for fluorescence) with HCQ (10 μ M).

Crystal structure analysis of HCQ and ACQ:

Figure S34. Labelled ORTEP structures of ACQ and HCQ

 Table S11. Torsion angles for ACQ and HCQ

	Torsion Angle	Torsion (°)
	N3-C5-C6-N1	-179.94
ACQ	O1-N2-C5-C6	-179.23
	O2-N1-C6-C5	177.63
	H3NB-N3-C5-C6	-178.82
	O1-N1-C9-C8	178.43
	O3-N3-C8-C9	-179.84
HCQ	O2-C9-C8-N3	178.64
	H1-O1-N1-C9	81.69
	H1-O1-N1-C6	-103.29

Figure S35. Crystal packing indicating water involvement of water molecule in hydrogen bonding.

Figure S36. H-bonding in ACQ

Table S12. The S_0/S_1 transition energies, oscillator strengths of three enol (E), keto (K) and [RO----water] optimized in the S_0 electronic state, E*, K* and [RO----water] * optimized in the excited electronic state. The calculations were performed for molecule in acetonitrile using TD B3LYP/6-311+G(d,p) and solvent involved in the CPCM mode.

HCQ form	Calculated absorbance values	S ₀ -S ₁ transition	Experimental
	(S ₀ -S ₁ transition at optimized S ₀)	oscillator strength	absorbance
			values in
			CH ₃ CN
Е	428.05 nm	0.1429	412
K	523.95 nm	0.1471	532
	Calculated absorbance values	S ₀ -S ₁ transition	Experimental
	$(S_0-S_1 \text{ transition at optimized } S_0)$	oscillator strength	absorbance
			values in water
[RO ⁻ water]	505.82 nm	0.1424	480
	Calculated emission values (S ₁ -		Experimental
	S_0 transition at optimized S_1)		emission values
			in CH ₃ CN
E*	493.69 nm	0.2163	506
K*	622.41 nm	0.1897	630
	Calculated emission values (S ₁ -	S ₁ -S ₀ transitions	Experimental
	S_0 transition at optimized S_1)	Oscillator strength	emission values
		_	in water
[RO ⁻ water] *	599.66 nm	0.1907	597

Figure S38. Excited state optimised structures of Enol and Keto forms of HCQ in acetonitrile.

Figure S39. Ground state (left) and Excited state (right) optimised structures of [RO⁻---water] form of HCQ in water depicting hydrogen bonding interaction.

Single Crystal Data for HCQ

exp_1386_HCQ Deposition Number: 2270859

Table 1 Crystal data and structure refinement for exp_1386_HCQ.

exp_1386_HCQ
$C_9H_7N_3O_4$
219.18
93
monoclinic
C2/c
16.4937(3)
8.07760(10)
14.6807(3)
90
107.189(2)
90
1868.54(6)
8
1.5723
1.091
915.6
0.2 imes 0.1 imes 0.05
Cu Ka ($\lambda = 1.54184$)
11.24 to 159.14
$-20 \le h \le 20, -9 \le k \le 5, -14 \le l \le 18$
4615
1954 [$R_{int} = 0.0197, R_{sigma} = 0.0272$]
1954/0/149
1.037
$R_1 = 0.0450, wR_2 = 0.1382$
$R_1 = 0.0468, wR_2 = 0.1405$
0.64/-0.73

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for exp_1386_HCQ. U _{eq} is defined as 1/3 of of the trace of the
orthogonalised U _{IJ} tensor.

Atom	x	У	z	U(eq)
O2	4503.0(7)	4067.3(13)	5746.4(8)	28.7(3)
O002	3929.0(7)	3856.1(13)	7206.9(8)	29.4(3)
01	5445.1(7)	6600.6(14)	6689.0(7)	29.9(3)
03	3630.4(7)	10431.7(14)	4796.6(8)	32.6(3)
N2	4273.1(8)	5696.6(15)	5527.2(8)	23.5(3)
N3	5428.2(9)	10935.8(17)	6689.4(9)	31.4(3)
C7	3563.5(9)	6002.4(19)	4763.2(10)	23.5(3)
C8	3335.1(9)	7644.4(19)	4493.9(9)	24.3(3)

C9	5016.5(9)	9902.0(18)	6254.4(10)	25.8(3)
C3	2623.3(9)	8010(2)	3726.8(10)	29.6(4)
C6	3064.5(10)	4707.5(19)	4259.4(11)	28.6(3)
C5	2362.5(10)	5087(2)	3503.7(11)	32.9(4)
C4	2141.3(10)	6727(2)	3232.5(11)	34.1(4)
N1	3834.1(8)	8943.8(15)	5015.6(8)	24.1(3)
C1	4801.0(9)	6884.0(18)	6033.2(10)	23.4(3)
C2	4525.7(9)	8564.2(18)	5741.4(10)	23.9(3)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for exp_1386_HCQ. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

L	11 12					
Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
O2	35.6(6)	18.4(5)	30.8(6)	3.5(4)	7.5(4)3.	.5(4)
O002	29.8(6)	25.7(6)	28.9(6)	-1.8(4)	2.9(4) 0.	.9(4)
01	28.3(5)	27.2(6)	29.0(6)	-0.9(4)	0.1(4) 3.	.1(4)
O3	39.9(6)	21.8(6)	37.1(6)	7.4(4)	13.1(5)6.	6(4)
N2	25.6(6)	19.0(6)	24.9(6)	1.3(4)	5.7(5)2.	.7(4)
N3	40.9(7)	25.7(7)	29.6(7)	-3.6(5)	13.3(6) 3.	- .5(5)
C7	22.5(7)	27.3(8)	21.6(7)	0.4(5)	7.9(5)1.	.2(5)
C8	24.1(7)	27.4(8)	22.8(7)	1.3(5)	8.8(5)1.	.1(5)
C9	31.4(7)	24.3(7)	24.1(6)	1.0(6)	12.1(5)1.	.0(5)
C3	26.5(7)	36.0(9)	26.6(7)	5.5(6)	8.2(6)6.	.0(6)
C6	27.8(7)	29.4(8)	28.6(7)	-2.4(6)	8.5(6)2.	_ .2(6)
C5	27.5(7)	43.2(9)	27.0(7)	-5.5(6)	6.6(6)6.	- .1(6)
C4	24.9(7)	50.6(10)	24.8(7)	2.3(7)	4.2(6)1.	1(6)
N1	26.7(6)	22.3(6)	25.6(6)	2.6(5)	11.2(5)3.	.0(4)
C1	24.3(7)	23.8(7)	22.6(6)	-0.3(5)	7.6(5)1.	4(5)
C2	27.3(7)	22.3(7)	23.2(7)	-1.0(5)	9.2(6)0.	.5(5)

Table 4 Bond Lengths for exp_1386_HCQ.

Atom	Length/Å	Atom Atom		Length/Å	
N2	1.3810(16)	C8	C3	1.3973(19)	
C1	1.2262(18)	C8	N1	1.4117(19)	
N1	1.2637(16)	С9	C2	1.425(2)	
C7	1.3831(18)	C3	C4	1.375(2)	
C1	1.3592(19)	C6	C5	1.381(2)	
C9	1.145(2)	C5	C4	1.400(3)	
C8	1.403(2)	N1	C2	1.3462(19)	
C6	1.400(2)	C1	C2	1.455(2)	
	Atom N2 C1 N1 C7 C1 C9 C8 C6	AtomLength/ÅN21.3810 (16)C11.2262 (18)N11.2637 (16)C71.3831 (18)C11.3592 (19)C91.145 (2)C81.403 (2)C61.400 (2)	AtomLength/ÅAtomN21.3810(16)C8C11.2262(18)C8N11.2637(16)C9C71.3831(18)C3C11.3592(19)C6C91.145(2)C5C81.403(2)N1C61.400(2)C1	AtomLength/ÅAtom AtomN21.3810(16)C8C3C11.2262(18)C8N1N11.2637(16)C9C2C71.3831(18)C3C4C11.3592(19)C6C5C91.145(2)C5C4C81.403(2)N1C2C61.400(2)C1C2	

Ator	n Aton	n Atom	Angle/°	Atom	Ator	n Atom	Angle/°
C7	N2	O2	117.87(12)	C4	C5	C6	121.65(15)
C1	N2	O2	117.24(11)	C5	C4	C3	120.09(14)
C1	N2	C7	124.68(12)	C8	N1	O3	120.04(12)
C8	C7	N2	119.32(13)	C2	N1	O3	121.15(13)
C6	C7	N2	121.31(14)	C2	N1	C8	118.81(12)
C6	C7	C8	119.37(13)	N2	C1	O1	124.32(13)
C3	C8	C7	121.23(14)	C2	C1	O1	121.87(13)
N1	C8	C7	119.01(12)	C2	C1	N2	113.80(12)
N1	C8	C3	119.76(14)	N1	C2	С9	117.51(13)
C2	С9	N3	177.52(16)	C1	C2	С9	118.21(13)
C4	C3	C8	118.88(15)	C1	C2	N1	124.28(13)
C5	C6	C7	118.77(15)				

Table 5 Bond Angles for exp_1386_HCQ.

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for exp_1386_HCQ.

Atom	x	у	z	U(eq)
H2	4355(13)	3776(8)	6223(10)	43.1(4)
H00a	4180(9)	4607(18)	7593(12)	44.1(4)
H00b	3395.7(17)	3950(20)	7101(14)	44.1(4)
H3	2474.8(9)	9126(2)	3549.7(10)	35.5(4)
H6	3206.1(10)	3588.1(19)	4434.2(11)	34.3(4)
Н5	2021.0(10)	4214(2)	3159.1(11)	39.5(5)
H4	1657.6(10)	6954(2)	2706.3(11)	40.9(5)

Experimental

The crystals of $C_9H_7N_3O_4$ [exp_1386_HCQ] were obtained as deep red rods from ethanol solution. The singlecrystal XRD data collection and data reduction were performed using CrysAlis PRO on a single-crystal Rigaku Oxford XtaLab Pro diffractometer. The crystal was kept at 93 K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the olex2.refine [3] refinement package using Gauss-Newton minimization.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.

Crystal structure determination of [exp_1386_HCQ]

Crystal Data for C₉H₇N₃O₄ (M=219.18 g/mol): monoclinic, space group C2/c (no. 15), a = 16.4937(3) Å, b = 8.07760(10) Å, c = 14.6807(3) Å, $\beta = 107.189(2)^{\circ}$, V = 1868.54(6) Å³, Z = 8, T = 93 K, μ (Cu K α) = 1.091 mm⁻¹, Dcalc = 1.5723 g/cm³, 4615 reflections measured (11.24° $\leq 2\Theta \leq 159.14^{\circ}$), 1954 unique ($R_{int} = 0.0197$, $R_{sigma} = 0.0272$) which were used in all calculations. The final R_1 was 0.0450 (I>=2u(I)) and wR_2 was 0.1405 (all data).

S.No.	Structure	Reference
1.		2-6
2.		7-12
3.	-HO O N N	13

 Table S12. Tabular column for previously reported molecules depicting N-oxide ESIPT

S.No.	Structure	Mechanism	Reference
1.	онс	H-bonding between	14
	СНО	formyl groups and	
		to- S_0 emission	
	ОНС	-	
2.	О ОН	Anion-induced	15
		followed by re-	
		protonation with	
	<u> </u>	water	
3.	Сно 🔿	Solvent polarity as	16
		and hydrogen-	
		boliding interactions	
4.		ESIPT	17
	но		
5.	$\downarrow 0 \qquad \downarrow_N \qquad = 0 \not\downarrow$	Hydrolysis of	18
		boronate ester	
	$\bigcirc \bigcirc$		
6.	R R	Water behaves as	19
	Ń.	proton acceptor in a	
		proton coupled	
	$\begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} BF_4^-$	leading to	
		quenching	

Table S13. Tabular column for previously reported organic fluorophores utilised for water detection:

S.No.	Structure	Application	Reference
1.	R N N N N N N N N N N N N N N N N N N N	Detection of enzymes involved in hypoxia selective cytotoxin activation	20
2.		Heme and ferroptosis detection	21
3.		Labile Heme imaging in live cells	22
4.		Fe ²⁺ sensing	23
5.		Nitric oxide detection	24
6.		Bilirubin detection in human blood serum	25
7.	O O O O O O O O O O O O O O	Fe ²⁺ detection in cosmetics and live cells	26

 Table S14. Tabular column for recently reported N-oxide fluorophores and their application.

References:

1. Lakowicz, J. R., *Principles of fluorescence spectroscopy*. Springer: 2006.

2. Szemik-Hojniak, A.; Deperasiñska, I.; Jerzykiewicz, L.; Sobota, P.; Hojniak, M.; Puszko, A.; Haraszkiewicz, N.; van der Zwan, G.; Jacques, P., Crystal Structure, Spectroscopic, and Theoretical Investigations of Excited-State Proton Transfer in the Doubly Hydrogen-Bonded Dimer of 2-Butylamino-6-methyl-4-nitropyridine N-Oxide. *The Journal of Physical Chemistry A* **2006**, *110* (37), 10690-10698.

3. Klerk, J. d.; van Stokkum, I. H.; Szemik-Hojniak, A.; Deperasinska, I.; Gooijer, C.; Zhang, H.; Buma, W.-J.; Ariese, F., Excited state processes of 2-butylamino-6-methyl-4-

nitropyridine N-oxide in nonpolar solvents. A transient absorption spectroscopy study. *The Journal of Physical Chemistry A* **2010**, *114* (12), 4045-4050.

4. Poór, B.; Michniewicz, N.; Kállay, M.; Buma, W. J.; Kubinyi, M.; Szemik-Hojniak, A.; Deperasiñska, I.; Puszko, A.; Zhang, H., Femtosecond Studies of Charge-Transfer Mediated Proton Transfer in 2-Butylamino-6-methyl-4-nitropyridine N-Oxide. *The Journal of Physical Chemistry A* **2006**, *110* (22), 7086-7091.

5. Szemik-Hojniak, A.; Wiśniewski, Ł.; Deperasińska, I.; Makarewicz, A.; Jerzykiewicz, L.; Puszko, A.; Erez, Y.; Huppert, D., The impact of solvent polarity on intramolecular proton and electron transfer in 2-alkylamino-4-nitro-5-methyl pyridine N-oxides. *Physical Chemistry Chemical Physics* **2012**, *14* (22), 8147-8159.

6. de Klerk, J. S.; Szemik-Hojniak, A.; Ariese, F.; Gooijer, C., Intramolecular Proton-Transfer Processes Starting at Higher Excited States: A Fluorescence Study on 2-Butylamino-6-methyl-4-nitropyridine N-Oxide in Nonpolar Solutions. *The Journal of Physical Chemistry A* 2007, *111* (26), 5828-5832.

7. Shekhovtsov, N. A.; Nikolaenkova, E. B.; Berezin, A. S.; Plyusnin, V. F.; Vinogradova, K. A.; Naumov, D. Y.; Pervukhina, N. V.; Tikhonov, A. Y.; Bushuev, M. B., Tuning ESIPT-coupled luminescence by expanding π -conjugation of a proton acceptor moiety in ESIPT-capable zinc (II) complexes with 1-hydroxy-1 H-imidazole-based ligands. *Dalton Transactions* **2022**, *51* (39), 15166-15188.

8. Shekhovtsov, N. A.; Nikolaenkova, E. B.; Vorobyova, S. N.; Plyusnin, V. F.; Vinogradova, K. A.; Sukhikh, T. S.; Tikhonov, A. Y.; Bushuev, M. B., Luminescence of ESIPT-capable zinc (II) complexes with a 1-hydroxy-1 H-imidazole-based ligand: exploring the impact of substitution in the proton-donating moiety. *Dalton Transactions* **2023**, *52* (23), 8114-8134.

9. Shekhovtsov, N. A.; Ryadun, A. A.; Bushuev, M. B., Luminescence of a Zinc (II) Complex with a Protonated 1-Hydroxy-1H-imidazole ESIPT Ligand: Direct Excitation of a Tautomeric Form. *ChemistrySelect* **2021**, *6* (44), 12346-12350.

10. Shekhovtsov, N. A.; Nikolaenkova, E. B.; Berezin, A. S.; Plyusnin, V. F.; Vinogradova, K. A.; Naumov, D. Y.; Pervukhina, N. V.; Tikhonov, A. Y.; Bushuev, M. B., A 1-Hydroxy-1H-imidazole ESIPT Emitter Demonstrating anti-Kasha Fluorescence and Direct Excitation of a Tautomeric Form. *ChemPlusChem* **2021**, *86* (10), 1436-1441.

11. Shekhovtsov, N. A.; Vinogradova, K. A.; Vorobyova, S. N.; Berezin, A. S.; Plyusnin, V. F.; Naumov, D. Y.; Pervukhina, N. V.; Nikolaenkova, E. B.; Tikhonov, A. Y.; Bushuev, M. B., N-Hydroxy–N-oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(ii) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1H-imidazole ESIPT-ligand. *Dalton Transactions* **2022**, *51* (25), 9818-9835.

12. Shekhovtsov, N. A.; Nikolaenkova, E. B.; Ryadun, A. A.; Samsonenko, D. G.; Tikhonov, A. Y.; Bushuev, M. B., ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1 H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence. *Molecules* **2023**, *28* (4), 1793.

13. Carneiro, L. M.; Keppler, A. F.; Ferreira, F. F.; Homem-de-Mello, P.; Bartoloni, F. H., Mechanisms for the Deactivation of the Electronic Excited States of α -(2-Hydroxyphenyl)-N-phenylnitrone: From Intramolecular Proton and Charge Transfer to Structure Twisting and Aggregation. *The Journal of Physical Chemistry B* **2022**, *126* (38), 7373-7384.

14. Zhou, Y.; Baryshnikov, G.; Li, X.; Zhu, M.; Ågren, H.; Zhu, L., Anti-Kasha's Rule Emissive Switching Induced by Intermolecular H-Bonding. *Chemistry of Materials* **2018**, *30* (21), 8008-8016.

15. Kumar, P.; Ghosh, A.; Jose, D. A., A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: applications in rewritable paper and fingerprint imaging. *Analyst* **2019**, *144* (2), 594-601.

16. Huang, Z.; Tang, F.; Ding, A.; He, F.; Duan, R.-H.; Huang, J.; Kong, L.; Yang, J., D-A-D structured triphenylamine fluorophore with bright dual-state emission for reversible mechanofluorochromism and trace water detection. *Molecular Systems Design & Engineering* **2022**, 7 (8), 963-968.

17. Sun, H.; Sun, S.-S.; Han, F.-F.; Zhao, Y.; Li, M.-D.; Miao, B.-X.; Nie, J.; Zhang, R.; Ni, Z.-H., Water-stimuli-responsive dynamic fluorescent switch from Kasha's rule to anti-Kasha's rule based on a tetraphenylethene substituted Schiff base. *Chemical Engineering Journal* **2021**, *405*, 127000.

18. Pramanik, A.; Karmakar, J.; Grynszpan, F.; Levine, M., Highly sensitive water detection through reversible fluorescence changes in a syn-bimane based boronic acid derivative. *Frontiers in Chemistry* **2022**, *9*, 782481.

19. Jakobsen, R. K.; Laursen, B. W., New Principle for Simple Water Detection using Fluorescence Lifetime Triangulenium Probes. *ChemPhotoChem* **2024**, *8* (2), e202300215.

20. Shen, X.; Laber, C. H.; Sarkar, U.; Galazzi, F.; Johnson, K. M.; Mahieu, N. G.; Hillebrand, R.; Fuchs-Knotts, T.; Barnes, C. L.; Baker, G. A.; Gates, K. S., Exploiting the Inherent Photophysical Properties of the Major Tirapazamine Metabolite in the Development of Profluorescent Substrates for Enzymes That Catalyze the Bioreductive Activation of Hypoxia-Selective Anticancer Prodrugs. *The Journal of Organic Chemistry* **2018**, *83* (6), 3126-3131.

21. Dubey, Y.; Mansuri, S.; Kanvah, S., Detecting labile heme and ferroptosis through 'turn-on' fluorescence and lipid droplet localization post Fe2+ sensing. *Journal of Materials Chemistry B* **2024**, *12* (20), 4962-4974.

22. Kawai, K.; Hirayama, T.; Imai, H.; Murakami, T.; Inden, M.; Hozumi, I.; Nagasawa, H., Molecular Imaging of Labile Heme in Living Cells Using a Small Molecule Fluorescent Probe. *Journal of the American Chemical Society* **2022**, *144* (9), 3793-3803.

23. Zeng, X.; Chen, J.; Yu, S.; Liu, Z.; Ma, M., A highly selective and sensitive "turn-on" fluorescent probe for Fe2+ and its applications. *Journal of Luminescence* **2022**, *250*, 119069.

24. Jenni, S.; Renault, K.; Dejouy, G.; Debieu, S.; Laly, M.; Romieu, A., In Situ Synthesis of Phenoxazine Dyes in Water: Application for "Turn-On" Fluorogenic and Chromogenic Detection of Nitric Oxide. *ChemPhotoChem* **2022**, *6* (5), e202100268.

25. Ahmmed, E.; Mondal, A.; Sarkar, A.; Chakraborty, S.; Lohar, S.; Saha, N. C.; Dhara, K.; Chattopadhyay, P., Bilirubin Quantification in Human Blood Serum by Deoxygenation Reaction Switch-Triggered Fluorescent Probe. *ACS Applied Bio Materials* **2020**, *3* (7), 4074-4080.

26. Khatun, S.; Biswas, S.; Binoy, A.; Podder, A.; Mishra, N.; Bhuniya, S., Highly chemoselective turn-on fluorescent probe for ferrous (Fe2+) ion detection in cosmetics and live cells. *Journal of Photochemistry and Photobiology B: Biology* **2020**, *209*, 111943.

27. Li, M.; Li, H.; Wu, Q.; Niu, N.; Huang, J.; Zhang, L.; Li, Y.; Wang, D.; Tang, B. Z., Hypoxia-activated probe for NIR fluorescence and photoacoustic dual-mode tumor imaging. *iScience* **2021**, *24* (3), 102261.

28. Zhu, M.; Zhao, Z.; Liu, X.; Chen, P.; Fan, F.; Wu, X.; Hua, R.; Wang, Y., A novel near-infrared fluorimetric method for point-of-care monitoring of Fe2+ and its application in bioimaging. *Journal of Hazardous Materials* **2021**, *406*, 124767.

29. Xu, W.; Wu, P.; Li, X.; Liu, S.; Feng, L.; Xiong, H., Two birds with one stone: A highly sensitive near-infrared BODIPY-based fluorescent probe for the simultaneous detection of Fe2+ and H+ in vivo. *Talanta* **2021**, *233*, 122601.