Supporting Information

Type-II WS₂/AsP Van der Waals Heterojunctions with High Rectification Ratio and High Detectivity

Runmeng Jia¹, Tingting Guo¹, Yifei Wang¹, Yuhai Lin¹, Cheng Zhu¹, Ahmad Farhan¹, Jing Xu¹, Banqin Ruan¹, Aidi Zhang², Xiang Chen¹, Zhi Li¹, Xiufeng

 $Song^{1\ast} \mbox{ and } Haibo \ Zeng^{1\ast}$

¹MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

²Engineering Research Center of Functional Polymer Membrane Materials of Jiangsu Province, Nanjing Bready Advanced Materials Technology Co., Ltd, No. 8 Baoding Road, Nanjing 211103, People's Republic of China

* Authors to whom any correspondence should be addressed. E-mail: <u>xiufengsoong@njust.edu.cn</u> and <u>zeng.haibo@njust.edu.cn</u>

Figure S1. The XPS of AsP. (a) The high-resolution nuclear grade spectra of P 2p in the pure AsP sample. (b) The high-resolution nuclear grade spectra of As 3d in the AsP samples.

Figure S2. The XPS of WS_2 . (a) The high-resolution nuclear grade spectra of W 4f in the pure WS_2 sample. (b) The high-resolution nuclear grade spectra of S 2p in the WS_2 samples.

Figure S3. Electrical properties of the AsP and WS₂. (a) $I_{ds}-V_{ds}$ curves and (b) $I_{ds}-V_{bg}$ curves of AsP device. (c) $I_{ds}-V_{ds}$ curves and (d) $I_{ds}-V_{bg}$ curves of a WS₂ device.

Figure S4. (a) The switching ratios of WS_2/AsP vdWHs device at different V_{ds} . (b) The forward rectification ratio of WS_2/AsP vdWHs device at different

Figure S5. Photoresponse characteristics of the WS₂ device. (a) I_{ds}-V_{ds} curves of the device under 532 nm laser illumination with different power intensities.
(b) Dependence of photocurrent and responsivity on light power density (V_{ds} = 1 V). (c) Detectivity and EQE under different light power densities.

Figure S6. Dark current in WS_2 and WS_2/AsP vdWHs device.

Figure S7. Detectivity of WS_2 device and WS_2/AsP vdWHs device under different light intensities.

Figure S8. Response speed of the device under 532 nm laser illumination at $V_{ds} \ = \ 1 \ V.$

Figure S9. (a) Photocurrent mapping of the device under 532 nm laser irradiation with $V_{ds} = 1 \text{ V}$. (b) Photomicrograph of the device corresponding to photocurrent mapping.

(Scale bar: 10 µm)

Devices	Wavelen	D* (Jones)	R	T _{rise}	$\mathrm{T}_{\mathrm{fall}}$	Refs
	gth (nm)					
WS ₂ /AsP	532	1.72×10^{13}	14.6 A/W	10 ms	10 ms	This
						work
WS ₂ /InSe	520	2.5×10^{11}	61 mA/W	63 µs	76 µs	1
AsP/InSe	520	10 ¹²	1 A/W	217 μs	89 µs	2
SnS ₂ /MoS ₂	532	4×10^{11}	28 A/W	0.64 s	~	3
TaSe ₂ /WS ₂ /T	633	2.43 × 10 ¹¹	292 mA/W	43 µs	54 µs	4
aSe ₂						
n-MoS ₂ /p-	532	3.6 × 10 ¹¹	249 mA/W	10.5	7.3 μs	5
GaSe				μs		
ReS ₂ /MoS ₂	532	10 ¹²	0.197 A/W	13 µs	15 µs	6
b-AsP/WSe ₂	275	2.27×10^{12}	244 A/W	5.1 ms	4 ms.	7
ReS ₂ /AsP	532	5×10^{10}	12.56 A/W	700	800	8
				ms	ms	
WS ₂ /Bi ₂ O ₂ Se	532	9.5×10 ⁸	628 mA/W	33 ms	38 ms	9

Table S1. Performance parameters of WS₂/AsP and other heterojunction photod etectors

- [1]Chen J, Zhang Z, Ma Y, et al. High-performance self-powered ultraviolet to nearinfrared photodetector based on WS₂/InSe van der Waals heterostructure. Nano Research, 2023, 16(5): 7851-7857.
- [2]Wu F, Xia H, Sun H, et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Advanced Functional Materials, 2019, 29(12): 1900314.
- [3]Quan S, Li L, Guo S, et al. SnS₂/MoS₂ van der Waals Heterostructure Photodetector with Ultrahigh Responsivity Realized by a Photogating Effect. ACS Applied Materials & Interfaces, 2023, 15(51): 59592-59599.

- [4]Wang X, Tong L, Fan W, et al. Air-stable self-powered photodetector based on TaSe₂/WS₂/TaSe₂ asymmetric heterojunction with surface self-passivation. Journal of Colloid and Interface Science, 2024, 657: 529-537.
- [5]Wu X, Guo W, Li M, et al. Influence of the Device Structure on the Electrical and Photodetector Properties of n-MoS₂/p-GaSe Heterojunction Optoelectronic Devices. ACS Applied Nano Materials, 2023, 6(13): 11327-11333.
- [6]Wang Y, Wu Z, Zheng P, et al. High-performance and broadband 2D ReS₂/MoS₂ semivertical heterojunction photodiodes. Materials Science in Semiconductor Processing, 2023, 165: 107650.
- [7]Zhao F, Wang D, Zhang F, et al. Gate-controlled photoresponse improvement in b-AsP/WSe₂ heterostructures with type-I band alignment. Applied Physics Letters, 2023, 122: 151105.
- [8]Jian Y, Song X, Wang X, et al. ReS₂/black arsenic-phosphorus van der Waals heterojunction for a high-performance photodetector. ACS Applied Electronic Materials, 2022, 4(12): 6013-6019.
- [9]Fang C, Han J, Yu M, et al. WS₂/Bi₂O₂Se van der Waals heterostructure with straddling band configuration for high performances and broadband photodetector. Advanced Materials Interfaces, 2022, 9(9): 2102091.