Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Self-healing epoxidized natural rubber flexible sensors based on hydrogen bonding interactions

Wanying Hu^a, Caiyan Wang^a, Fan Fei^a, Runhua Wang^a, Jincheng

Wang^a*, Hao Tian^a, Yiyao Zhu^a, Hua Zhang^b*

- a. College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P.R.China
- b. Hainan Vocational University of Science and Technology, School of Chemical and Material Engineering (herry_zhanghua@sjtu.edu.cn)

*Corresponding author E-mail: wjc406@sues.edu.cn

Testing and characterization

(1) Infrared spectral analysis (FTIR)

Infrared spectrograms were obtained by recording 4000-500 cm⁻¹ wave numbers of MMT, UPy-NCO, MMT-UPy and MMT-UPy/ENR using the ATR unit in an infrared spectrometer (Thermo Scientific Nicolet iS5, USA). The number of scans was 32 with a resolution of 4 cm⁻¹.

(2) Scanning electron microscope (SEM)

A scanning electron microscope (TESCAN MIRA LMS, Czech Republic) was used to observe the cross-sectional morphology of the MMT- UPy/ENR samples. The test distance was 8 mm and the accelerating voltage was 5 kV. the samples were treated with liquid nitrogen embrittlement before testing and a conductive environment was provided by gold spraying.

(3) Polarized Light Microscope (PLM)

Polarized light microscope (PLM, LW35PB) was used to observe the macroscopic morphology of the MMT-UPy/ENR composite cross section. The magnifications were 50, 100, 400 and 600 times.

(4) Thermal weight loss analyzer (TG)

A heat loss weight analyzer (PerkinElmer 4000, China) was used to test ENR, MMT-UPy3%/ENR, and MMT-UPy10%/ENR, respectively. The equipment was energized with nitrogen during the test, the temperature range was set at 25~700°C, and the heating rate was set at 10°C/min.

(5) Mechanical properties test

A universal tensile testing machine (Instron 4465, China) was used to perform tensile testing on the MMT- UPy/ENR series samples. The tensile rate was set at 20 mm/min. The specimens were rectangular strips, the thickness of the experimental specimens was 2 mm, the width was 4 mm, and the length of the test section was 15 mm.

(6) Rheological performance test

A rheometer (MCR 102e, Austria) was used for viscoelasticity testing of ENR and MMT-UPy/ENR series samples. Testing temperature: 25°C, frequency test range 0.1-100 Hz.

(7) Self-repairability test

In order to perform the self-repair efficiency test, the specimens were first cut from the center position, followed by docking the cut specimens together to ensure that the docking was tight and without gaps. Then, the docked specimens were placed in Petri dishes and repaired at a constant 45°C

The repair was carried out in a constant 45°C environment for 12 h. After completion of the repair, the tensile properties of the original specimens and the self-repaired specimens were tested and the self-repair efficiency was calculated according to Equation (1):

$$\eta = \frac{Stress_{healed}}{Stress_{original}} \times 100\%$$
(1)

Where: η -Self-repair efficiency

Stress healed-Tensile strength of the repaired sample;

Stress original-Tensile strength of the original sample.

(8) Infrared thermal imaging test

An infrared thermal imager (LT7-P, China) was used to plot the surface temperature of MMT-UPy/ENR and MMT-UPy/ENR/sandwiched NPC-MCNT composites with time. The samples were cut into circular slices of the same size, with a diameter of 1.5 cm and a thickness of 0.8 mm, and placed on a thermostatic heating table at 100°C for infrared thermography of the warming process, and then placed on the ground for infrared thermography of the cooling process when the temperature stabilized.

(9) conductivity test

A digital multimeter (Keithley 2450, USA) was used to test the electrical resistance of the MMT- UPy/ENR/Interlayer NPC-MCNT composites when they were placed horizontally at room temperature and pressure. The composites were cut into sample strips with dimensions of 5 cm \times 1 cm \times 0.8 mm and connected to the tester at both ends.

(10) Human Motion Performance Test

A digital multimeter (Keithley 2450, USA) was used for the human motion monitoring ability test. The conductive tape was inserted into both ends of the composite material during sample making, and the sample specimens of the human body sensing test were directly fixed in each test part of the human body. By testing the deformation of each part of the human body during movement, the change in electrical resistance of the sample adhered to the human body due to deformation can be detected, thus realizing accurate detection of human movement, and the change in electrical resistance is obtained by Equation (2):

$$\Delta R / R_0 = (R - R_0) / R_0$$
 (2)

- R₀: Resistance of the sample in the initial state
- R : Resistance of the sample after deformation.

		composites			
Sample name	Thormal	Thermal	Thermal		
	decomposition	decomposition	decomposition	Thermal decomposi	
	onset	center	center	termination	
	temperature/°C	temperature	temperature	temperature/°C	
		(first stage)/°C	(second stage)/°C		
ENR	320	375		451	
MMT-UPy _{3%} /ENR	333	383	444	468	
MMT- UPy _{10%} /ENR	341	390	445	478	

Table S1. Thermal decomposition temperature parameters of ENR and MMT-UPy/ENR

 Table S2. Stress-strain data for MMT-UPy/ENR

Sample name	MMT- UPy _{1%} /ENR	MMT- UPy _{3%} /ENR	MMT- UPy _{5%} /ENR	MMT- UPy _{7%} /ENR	MMT- UPy _{10%} /ENR
Stress(%)	794	957	885	985	1028
Strain(MPa)	0.81	0.89	1.02	1.13	1.27

Table S3. Stress-strain data of MMT-UPy/ENR after healing at 45°C, 12h

Healing condition: atmospheric pressure, 45°C, 12h						
Sample name	MMT-	MMT-	MMT-	MMT-	MMT-	
	UPy _{1%} /ENR	UPy _{3%} /ENR	UPy5%/ENR	UPy7%/ENR	UPy10%/ENR	
Stress(%)	719	851	753	797	812	
Strain(MPa)	0.734	0.792	0.861	0.935	1.028	
Recovering	00 60%	80.00%	81 150/	87 780/	81 010/	
efficiency(%)	90.0070	07.00/0	04.43/0	02.7070	81.0170	

		Strains	Response time(ms)	Gauge factor		Cyceles	
Materials	Stresses (MPa)			Stretch		(under strain)	Ref.
				ability	GF		
				(%)			
				0-50	108		
NR/N-BP/NR	≈0.8	600	21	50-250	0 98 669	2000(100%)	1
				250-			
				500			
				500-			
				520	2280		
				0-40	6.3	- 2000 (70%)	
			46	40-90	40.1		
GNPs/MWCNTs/SR	\	\			2675.		2
				90-100	5		
				0-3	2.41		3
	12.58	217	200	0-170	4 24	200(5%)	
XSBR/SSCNT				170-	7.27		
				214	25.98		
	\	\	400	0_{-176}	7 10	2400(90%)	
CPFC				21 180	2.63		4
	4 55+0 1	4 55+0 1 299 22		21-100	107.4		
S-MXenes/S-ENR	4.35±0.1	20.55	50	\	107.4	5000(10%)	5
		±30.32			3	1000 (200/	
PDA/NBR/CB	≈9	540		0-180	346)	6
$CNT_{0.23}/PEDOT:$	2.05	1878	63	١.	١.	2000 (100 %\2000%)	7
1000.3@100				0-375	110	/0/2000/0/	
	2.6	700	\	275	275	-	
CE/CD DTV				615	615	300000 (16	8
CF/CB-K1 V 6%				615	015		
				700	182		
				1.50	110		
MXene/CNTs/fluoro-	١	١	21.2	1-30	221	1000 (150	
				50-80	231		9
rubber				80-	431	%)	
				100			
MMT-				0-10	1.75		Our work
UPy/ENR/Sandwiche	e 1.27	1028	149.41	10-75	1.31	800(50%)	
d NCP-MCNT				75-100	0 0.88		

Table S4. A comparative analysis of the key performance metrics between our research endeavor and the recently published flexible, stretchable strain sensors in the field.

Fig.S1 Schematic of sandwich structure of MMT-UPy/ENR/Sandwiched NCP-MWCNT

References

1. Zhou, J.; Guo, X.; Xu, Z.; Wu, Q.; Chen, J.; Wu, J.; Dai, Y.; Qu, L.; Huang, Z., Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications. Composites Science and Technology 2020, 197, 108215.

2. Wang, Y.; Chen, Z.; Mei, D.; Zhu, L.; Wang, S.; Fu, X., Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection. Composites Science and Technology 2022, 217, 109078.

3. Lin, M.; Zheng, Z.; Yang, L.; Luo, M.; Fu, L.; Lin, B.; Xu, C., A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Advanced Materials 2022, 34 (1), 2107309.

4. Wang, L.; Huang, X.; Wang, D.; Zhang, W.; Gao, S.; Luo, J.; Guo, Z.; Xue, H.; Gao, J., Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range. Chemical Engineering Journal 2021, 405, 127025.

5. Guo, Q.; Zhang, X.; Zhao, F.; Song, Q.; Su, G.; Tan, Y.; Tao, Q.; Zhou, T.; Yu, Y.; Zhou, Z.; Lu, C., Protein-Inspired Self-Healable Ti3C2 MXenes/Rubber-Based Supramolecular Elastomer for Intelligent Sensing. ACS Nano 2020, 14 (3), 2788-2797.

6. Qu, M.; Qin, Y.; Sun, Y.; Xu, H.; Schubert, D. W.; Zheng, K.; Xu, W.; Nilsson, F., Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS Applied Materials & Interfaces 2020, 12 (37), 42140-42152.

7. Lam, T. N.; Lee, G. S.; Kim, B.; Dinh Xuan, H.; Kim, D.; Yoo, S. I.; Yoon, J., Microfluidic preparation of highly stretchable natural rubber microfiber containing CNT/PEDOT:PSS hybrid for fabric-sewable wearable strain sensor. Composites Science and Technology 2021.

8. Yang, H.; Gong, L. H.; Zheng, Z.; Yao, X. F., Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes.

Carbon 2020, 158, 893-903.

9.Wang, Y.; Qin, W.; Hu, X.; Liu, Z.; Ren, Z.; Cao, H.; An, B.; Zhou, X.; Shafiq, M.; Yin, S.; Liu, Z., Hierarchically buckled Ti3C2Tx MXene/carbon nanotubes strain sensor with improved linearity, sensitivity, and strain range for soft robotics and epidermal monitoring. Sensors and Actuators B: Chemical 2022, 368, 132228.