Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information

Interfacial self-assembly of a rigid-flexible terpyridine-Fe(II) supramolecular film and the electrochromic performance of its solid-state devices

Xiaomeng Sun, Xinfeng Cheng,* Xiya Chen, Hongwei Wang, Qian Zhao, Chunxia Yang, Xianchao Du, Xiaojing Xing, and Dongfang Qiu*

College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China

^{*} Correspondence: x.f.cheng@nynu.edu.cn (X.C.); qiudf2008@nynu.edu.cn (D.Q.)

Scheme S1. Synthetic process of the target ligand L

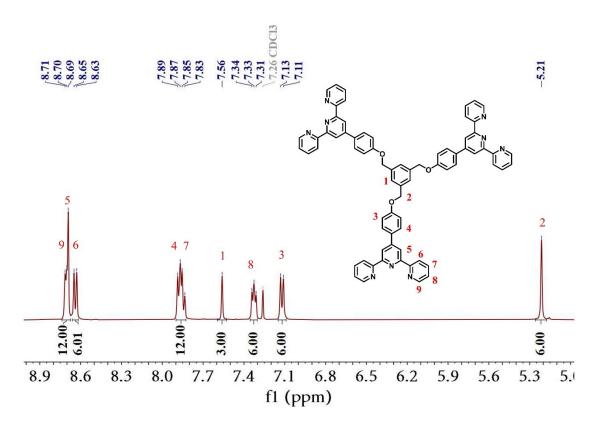


Figure S1. 1 H NMR spectrum of L (400 MHz, CDCl₃)

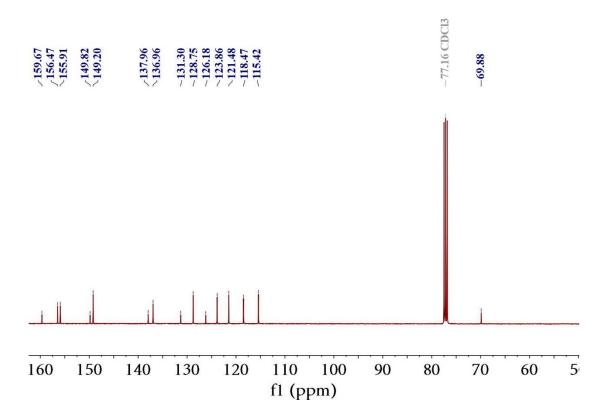


Figure S2. ¹³C NMR spectrum of L (100 MHz, CDCl₃)

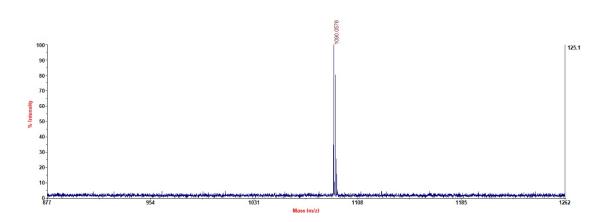


Figure S3. MALDI-TOF spectrum of L

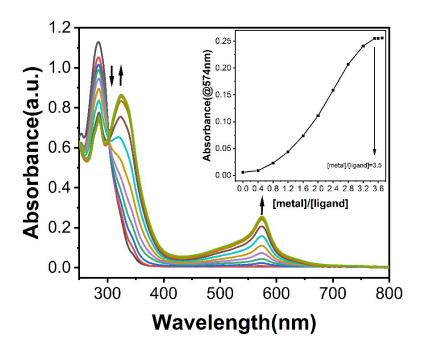


Figure S4. UV-vis absorption spectrum changes of the target ligand (10^{-5} M) in CH₃CN solution by continuous titration of FeSO₄ aqueous solution (10^{-3} M). Inset: The absorbance value at λ_{max} , $_{abs} = 574$ nm changes with the concentration ratio of Fe²⁺ and ligand L.

Table S1. Images of the **L-Fe** film coated ITO glasses obtained by self-assembly of various concentrations of **L** in CH₂Cl₂ solutions and absorbance values at $\lambda_{\text{max, abs}} = 574$ nm.

Ligand concentration	10 ⁻³ M	$5 \times 10^{-4} M$	10 ⁻⁴ M	$5 \times 10^{-5} M$	10 ⁻⁵ M	
film				340		
Abs@574nm	0.87	0.575	0.194	0.147	0.054	

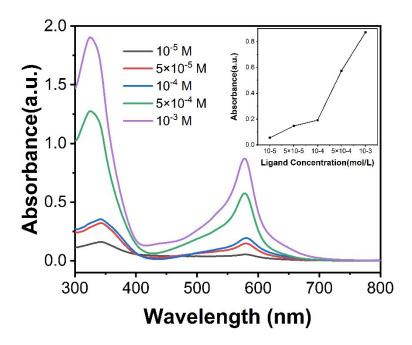


Figure S5. UV-vis absorption spectra of the L-Fe film coated ITO glasses obtained by self-assembly of various concentrations of L in CH_2Cl_2 solutions. Inset: Absorbance value at $\lambda_{max, abs} = 574$ nm changes with the concentration of L in CH_2Cl_2 solution.

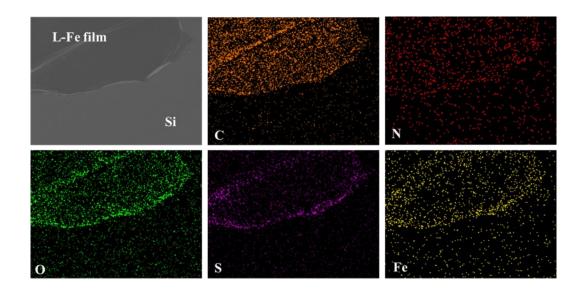


Figure S6. SEM and SEM/EDS element mapping images of the L-Fe film deposited Si substrate.

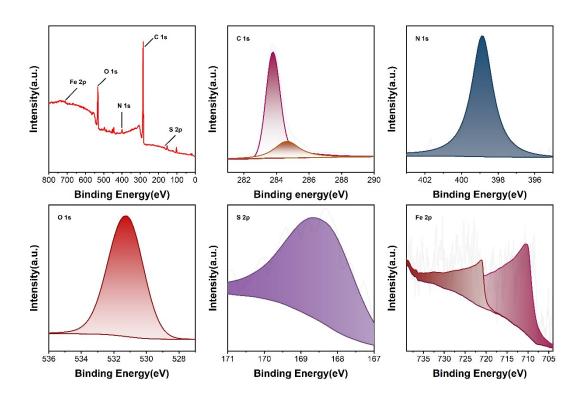


Figure S7. Full and fine XPS spectra of the L-Fe CONASHs film deposited Si substrate.

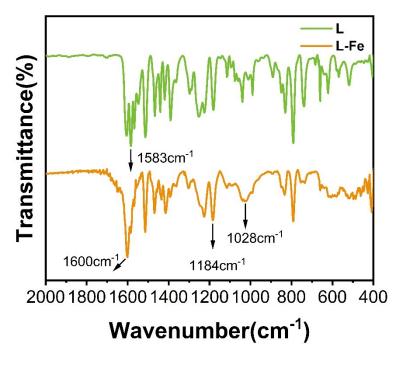
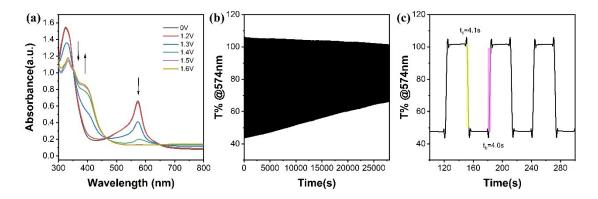



Figure S8. FT-IR spectra of L and L-Fe CONASHs film.

Figure S9. (a) Spectroelectrochemical properties of the **L-Fe** CONASHs film in 0.1 M n Bu₄NClO₄/CH₃CN electrolyte solution. (b) Transmittance change at $\lambda_{max, abs} = 574$ nm upon applying the switch voltages between 0 and +1.5 V with a pulse width of 30 s. (c) Coloring and bleaching times of **L-Fe** CONASHs film.

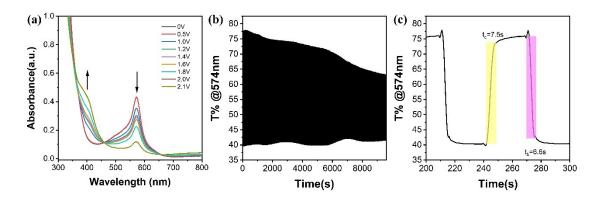


Figure S10. (a) Spectroelectrochemical behavior of the large-area L-Fe solid-state device $(7 \times 7 \text{ cm}^2)$. (b) Long-term stability of the large-area device at $\lambda_{\text{max, abs}} = 574 \text{ nm}$ upon applying the switching voltages between -0.8 and +2.1 V with a pulse width of 30 s. (c) Coloring and bleaching times of the large-area device.

Table S2. Electrochromic performance of the three-arm TPY based CONASHs devices reported previously and in this paper.

		ECD type	EC performance								
Ligand Structure	Metal		λ _{max} (nm)	Color Change	Coloration Step		Bleaching Step		$\Delta T_{\rm max}$	Long-term	Refer
	ions				Response time (s)	CE (C ⁻ ¹ ·cm ²)	Response time (s)	CE (C ⁻ 1·cm ²)	- 1 max (%)	stability	ence
	Fe(II)	Liquid	556	Intense pink/colo rless	0.84	-	0.88	-	-	-	_ 34
	10(11)	Solid	. 330		1.15	470.16	2.49	-	53	1000	
	Fe(II)	Liquid	580	purplish red /orange-	0.5	141.72	0.4	-	22.3	500	_ 36
	10(11)	Solid	yellow /green	1	-	0.9	-	-	-		
odamagoomodo	Fe(II)	Liquid	570	Purple/ye llow- green	14.3	172.82	7.3	-	20	-	31

	Liquid	578	deep purple / pale yellow deep violet/ pale yellow	-	-	-	-	-	800	
Fe(II)	Solid	579		-	-	-	-	-	-	_ 20
Fe(II)	Liquid	588		0.54	-	-	-	-	1000	- 30
Fe(II)	Liquid	pu	purple/pa le yellow	4.1	581.0	4.0	233.7	53.9	500	This work
	Solid	574		3.9	875.2	3.7	182.3	56.3	500	