Supporting Information

Influence of Diketopyropyrole spacer on the Ultrafast Nonlinear Optical Properties and Excited state dynamics of Dimeric Zinc Porphyrin Molecules

Rahul Murali^{a#}, Chinmoy Biswas^{a#}, Sudhanshu Kumar Nayak^a, Hanping Wu^b, Xiaobin Peng^b, Vipin Kumar^c, Prabhakar Chetti^c, Venugopal Rao Soma^d, Sai Santosh Kumar Raavi^{a,e*} ^aUltrafast Photophysics and Photonics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi, 502285, Telangana, India ^bState Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China ^cDepartment of Chemistry, National Institute of Technology Kurukshetra-136119, India ^dAdvanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India Department of Climate Change, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India

[#] authors contributed equally

*Corresponding author email address: <u>sskraavi@phy.iith.ac.in</u>

TRPL decay parameters of the samples measured using TSCPC by exciting with 475 nm. All the experimentally obtained decay times are properly aligned with bi-exponential decay functions fitted by the deconvolution formulae using the IRF:[1]

$$Fit = A + B_1 \exp\left(\frac{-t}{\tau_1}\right) + B_2 \exp\left(\frac{-t}{\tau_2}\right)$$
1

The average decay lifetimes were obtained using the following equation:

$$\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

Here τ_{avg} is the average lifetime obtained. τ_1, τ_2 are the PL lifetime components, with

A₁ and A₂ being their respective magnitudes.

The decay time parameters along with their relative % are tabulated below.

Table S1. TRPL decay parameters of the samples measured using TSCPC by exciting with

Sample	τ ₁	Rel. %	τ ₂	Rel. %	$ au_{avg}$	χ^2
ZnP1	0.32	88%	5.16	12%	0.8787	1.58
ZnP2	0.729	93%	7.71	7%	1.2189	1.17
ZnP3	0.5	91%	4.72	9%	0.89	1.6

475 nm. Respective decay time parameters along with their relative % are tabulated below.

 Table S2. Optimized Structures of all the molecules at B3LYP/6-31G (D, P) in combination

 with LANL2DZ along with dipole moment and dihedral angles

	Ground State Structures (S0)	Dipole (Debye)
ZnP1		0.24

Table S3. Absorption at B3LYP/6-31G (D, P) in combination with LANL2DZ having %Ci > 10

Molecules	States	Absorption nm (eV)	f	M.T.	%Ci	$\lambda_{\rm em}(f)^*$
	S1	788 (1.57)	2.1599	$H \rightarrow L$	98	
	52	686 (1.81)	0.0001	$H-1 \rightarrow L$	84	922 (2.7504)
	32			$H \rightarrow L+1$	14	
ZnPl	S3	649 (1.91)	0.0085	$H-3 \rightarrow L$	32	
				$H \rightarrow L+2$	63	
	S4	609 (2.03)	0.0001	$H-1 \rightarrow L$	15	
				$H \rightarrow L+1$	85	
	S5	605 (2.05)	0.0572	$H-2 \rightarrow L$	81	
				$H \rightarrow L+3$	11	
ZnP2	S1	834 (1.48)	2.8808	$H \rightarrow L$	96	079 (2 5049)
	S2	723 (1.71)	0.0021	$H \rightarrow L+1$	15	9/8 (3.3948)

	52	695 (1 91)	0.0190	$H-1 \rightarrow L$	15		
		085 (1.81)	0.0180	$H \rightarrow L+1$	81		
	54	(40 (1 01)	0.0195	$H-4 \rightarrow L$	26		
	54	049 (1.91)	0.0185	$H \rightarrow L+3$	59		
				$H-5 \rightarrow L$	13		
	S5	648 (1.913)	0.0018	$H-3 \rightarrow L$	13		
				$H \rightarrow L+4$	60		
	S1	891 (1.39)	3.4395	$H \rightarrow L$	96		
	S2	755 (1.64)	0.0003	$H-1 \rightarrow L$	30		
ZnP3				$H \rightarrow L+1$	67		
	S3	721 (1.72)	0.0082	$H-1 \rightarrow L$	63		
				$H \rightarrow L+1$	29	1066 (1 0002)	
	S4 666 (1.		0.2342	$H-2 \rightarrow L$	41	1000 (4.0092)	
		666 (1.86)		$H-1 \rightarrow L+1$	30		
				$H \rightarrow L+2$	22		
	S5 656 (1.89)	656 (1.90)	0.1711	$H-2 \rightarrow L$	34		
		030 (1.89)		$H-1 \rightarrow L+1$	59		

* TDDFT derived emission energies (λ_{em} nm) obtained at TD-B3LYP/6-31G (d, p) in combination with LANL2DZ in THF solvent.

Molec ules	FMOs						
7.01	HOMO	LUMO					
ZnP1	номо-1	LUMO+1					

Table S4. Frontier Molecular Orbitals of all molecules at B3LYP/6-31G (D, P) incombination with LANL2DZ

 Table S5. Calculated Molecular Electrostatic Potential (ESP)

Table S6. Saturation intensities of the sample at various peak intensities

Sample	I _s (GW/cm ²)						
	$I_1 = 45$	$I_2 = 90$	I ₃ = 145	$I_4 = 190$	I ₅ = 225		
	GW/cm ²	GW/cm ²	GW/cm ²	GW/cm ²	GW/cm ²		
ZnP1	8.5	53.3	112.4	163.8	205.4		
ZnP2	6.4	52.6	105.1	158.2	198.2		
ZnP3	16.4	82.1	116.5	180.1	217.2		

Fig. S1 Schematic of three level photophysical model used in global analysis of TAS data.

Fig. S2: Open aperture (OA) Z-scan figures of ZnP1 at : (a) 90 GW/cm²; (b) 190 GW/cm²; (c) 225 GW/cm². Scattered points represent experimental data whereas red solid line denotes their respective fits.

Fig S3: Open aperture (OA) Z-scan figures of ZnP2 at : (a) 90 GW/cm²; (b) 190 GW/cm²; (c) 225 GW/cm². Scattered points represent experimental data whereas red solid line denotes their respective fits.

Fig. S4: Open aperture (OA) Z-scan figures of ZnP3 at : (a) 90 GW/cm²; (b) 190 GW/cm²; (c) 225 GW/cm². Scattered points represent experimental data whereas red solid line denotes their respective fits.

Thermogravimetric Analysis (TGA)

ZnP2 is thermally stable with less than 5% weight loss at 408°C under a nitrogen atmosphere. Further to confirm any laser induced degradation we have cross measured the UV-Visible absorption of all the molecules before Z-scan measurements and after measurements. The TGA of ZnP3, showed less than 5% weight loss at 304°C under a nitrogen atmosphere, indicating that the porphyrin is thermally stable for the OSCs.

Fig **S5** : TGA thermogram of ZnP2-DPP (ZnP2) and HDDPP-EHTOM (ZnP3)-under inert atmosphere

References:

1. Ahmed, M.S., et al., *Metalated porphyrin-napthalimide based donor-acceptor systems with long-lived triplet states and effective three-photon absorption.* Journal of Photochemistry and Photobiology A: Chemistry, 2023. **435**: p. 114324.