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Materials and instruments:

The reagents used in this study were sourced from commercial suppliers and utilized without additional
purification unless specified. Standard methods were applied to purify and dry solvents, with
tetrahydrofuran (THF) freshly distilled over sodium/benzophenone and anhydrous CaH,, respectively,
before use. All other solvents for synthesis and purification such as DMF, acetonitrile underwent fresh
distillation prior to their usage. A dry nitrogen/argon atmosphere was maintained during reactions,
employing flame-dried glassware unless otherwise noted. Column chromatography was carried out with
silica gel (Merck, 100-200 mesh). Thin-layer chromatography (TLC) was performed on Merck plates (TLC
Silica Gel 60 F254) to monitor reactions. Yields reported pertain to the use of chromatographically and
spectroscopically pure compounds. Compound structures were characterized through NMR spectroscopy,
mass spectrometry, and various spectroscopic techniques as mentioned in the text. *H NMR spectra were
acquired on a 500 MHz Bruker spectrometer, with chemical shifts reported as 6 values relative to
tetramethylsilane (TMS) for the 'H NMR or the solvent peak. For the *C NMR, the solvent peaks were
utilized for calibration on 125 MHz Bruker spectrometers with complete proton decoupling.

Photoisomerization studies:

The photochemical isomerization studies were performed in acetonitrile for all the compounds at 298 K,
unless otherwise indicated. Closed to open photoisomerization reaction of compound DHP-tBu was carried
out under 525 nm green light and 640 nm red light source has been used in case of BDHP-tBu and NDHP-
tBu for the closed to open photoisomerization. Kessil PR160 series lights have been used for the
experiments. The average intensity of PR160 series is 399 mW/cm? (measured from 1 cm distance). The
reverse isomerization under different light sources have been studied and are indicated in the figure
captions. A 1 mL cuvette was kept under ice-cold conditions to minimize the effect of heat. The UV-vis
absorbance data were recorded subsequently with a Cary 60 UV-Vis spectrophotometer. The open to closed
isomerization were conducted thermally at multiple temperatures using a Peltier module. The open to closed
isomerization under the thermal conditions were carried out in the spectrophotometer itself using a Peltier
heating system accessory with an accuracy of £ 1 °C.



Synthetic scheme:
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Scheme S1: (a) NBS (1 equiv), CH.Clz, DMF, 0°C, 2 h; (b) Pd(PPh,), (10 mol%), K.COs (1.2 equiv), and
4 mL THF:Hz0 (3:1), reflux, N, 24 h.

The unsubstituted DHP was synthesized from 4-tert-butyltoluene in a seven-step synthesis following the
the literature report.r The purity of the synthesized compound was confirmed from *H NMR and **C NMR
data which were consistent with the reported values. Bromination of the DHP was done following the
reported procedure to afford the mono-substituted DHP-Br, the *tH NMR and **C data were consistent with
the literature.?

N-(4-(2,7-di-tert-butyl-3al,5al-dimethyl-3al,5al-dihydropyren-4-yl)phenyl)pivalamide (1). Pd(PPhs)s (27
mg, 0.024 mmol) was added to a mixture of DHP-Br (100 mg, 0.236 mmol), (4-pivalamidophenyl)boronic
acid (58 mg, 0.26 mmol), K.COsz (36 mg, 0.26 mmol) dissolved in 3 ml THF, 1 ml water and the mixture
was purged with nitrogen for 30 minutes. The mixture was stirred for 24 h at 80 °C. After cooling it to the
ambient temperature, the mixture was filtered through celite. The organic compound was extracted with
dichloromethane, and washed with water (2 x 15 mL) and then with brine (10 mL). The organic layer was
dried over anhydrous Na;SO4. After the removal of the volatiles in vacuum, the residue was purified by
column chromatography (silica gel, eluent: 5% ethyl acetate in hexane) to give 86 mg of pure compound 1



(yield 70%; melting point 193195 °C); *H NMR (500 MHz, Acetone-ds) 5 = 8.80 (s, 1H), 8.72 (s, 1H),
8.67 — 8.61 (m, 3H), 8.53 — 8.49 (m, 3H), 7.98 (d, J=8.6, 2H), 7.77 (d, J=8.6, 2H), 1.70 (s, 9H), 1.61 (s,
9H), 1.38 (s, 9H), —3.86 (d, J=12.6, 6H).2*C{'H} NMR (100 MHz, Acetone-ds) & 177.22, 145.85, 145.52,
139.38, 138.79, 137.49, 135.78, 133.69, 130.77, 130.06, 126.95, 126.87, 125.74, 125.56, 125.37, 120.68,
120.62, 118.32, 117.99, 40.28, 36.64, 36.27, 36.05, 30.90, 30.88, 27.82, 18.24, 18.02. HRMS (ESI): m/z
(Calc): Ca7HaisNO[M+H] 520.3574; found: 520.3581.
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Scheme S2: (a) NBS (1 equiv), CH:Clz, DMF, 0°C, 2 h; (b) Pd(PPh,), (10 mol%), KoCOs (1.2 equiv), and
4 mL THF:H20 (3:1), reflux, N, 24 h.

The unsubstituted BDHP was synthesized according to the literature report.® The purity of the synthesized
compound was confirmed by the *H NMR and *C NMR data which were consistent with the reported
values. Bromination of the BDHP was done following the reported procedure to afford the mono-substituted
BDHP-Br.*



N-(4-(2,7-di-tert-butyl-3al,5a1-dimethyl-3al,5al-dihydrobenzo[e]pyren-4-yl)phenyl)pivalamide (2).
In a 15 mL pressure tube equipped with a magnetic stir bar, Pd(PPhs)4 (20 mg, 0.017 mmol) was added to
a mixture of BDHP-Br (100 mg, 0.175 mmol), (4-Pivalamidophenyl)boronic acid (47 mg, 0.21 mmol),
K2COs (29 mg, 0.21 mmol) was dissolved in 3 ml THF, 1 ml water and the mixture was purged with
nitrogen for 30 minutes. The mixture was stirred for 24 h at 80 °C. After cooling to the ambient temperature,
the mixture was filtered through celite. The organic compound was extracted with dichloromethane, and
washed with water (2 x 15 mL), brine (10 mL). The organic layer was dried over anhydrous Na,SOa. After
the removal of the volatiles in rotavapor, the residue was purified by column chromatography (silica gel,
eluent: 10% ethyl acetate in hexane) to give 78 mg of pure compound 2 (yield 65%; melting point 195-197
°C); 'H NMR (500 MHz, Acetone-ds) & = 8.93 (s, 2H), 8.73 (s, 1H), 8.49 (d, J=7.4, 2H), 7.87 (d, J=8.3,
2H), 7.70 — 7.59 (m, 3H), 7.57 — 7.45 (m, 3H), 7.26 (s, 1H), 1.53 (s, 9H), 1.44 (s, 9H), 1.35 (s, 9H), -1.44
(s, 6H). BPC{*H} NMR (100 MHz, Acetone-ds) & 177.22, 145.85, 145.52, 139.38, 138.79, 137.49, 135.85,
135.78, 133.95, 133.69, 130.77, 130.36, 130.06, 126.95, 126.87, 125.74, 125.56, 125.37, 120.68, 120.62,
118.32, 117.99, 40.28, 36.64, 36.27, 36.05, 30.90, 30.88, 27.82, 18.24, 18.02. HRMS(ESI): m/z (Calc):
Cs1H&7NO[M+Na] 592.3658; found: 592.3753
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Scheme S3: (a) NBS (1 equiv), CHClz, DMF, 0°C, 2 h; (b) Pd(PPh,), (10 mol%), K.CO: (1.2 equiv), and
4 mL THF:H.O (3:1), reflux, N,, 24 h.

The unsubstituted NDHP was synthesized according to the literature report.® The purity of the synthesized
compound was confirmed from *H NMR and **C NMR data which were consistent with the reported values.
Bromination of the DHP was done following the reported procedure to afford the mono-substituted NDHP-
Br, the 'TH NMR and °C data were consistent with the literature.5

N-(4-(2,7-di-tert-butyl-3al,5al-dimethyl-3al,5al-dihydrodibenzo[de,qr]tetracen-4-
yl)phenyl)pivalamide (3).

In a 15 mL pressure tube equipped with a magnetic stir bar, Pd(PPhs)s (22 mg, 0.019 mmol) was added to

a mixture of NDHP-Br (100 mg, 0.19 mmol), (4-Pivalamidophenyl)boronic acid (51 mg, 0.23 mmol), K,COs;
(32 mg, 0.23 mmol) was dissolved in 3 ml THF, 1 ml water and the mixture was purged with nitrogen for
30 minutes. The mixture was stirred for 24 h at 80 °C. After cooling to the ambient temperature, the
mixture was filtered through celite. The organic compound was extracted with dichloromethane, and
washed with water (2 x 15 mL), brine (10 mL). The organic layer was dried over anhydrous Na,SO,. After
the removal of the volatiles in rotavapor, the residue was purified by column chromatography (silica gel,
eluent: 10% ethyl acetate in hexane) to give 77 mg of pure compound 3 (yield 65%; melting point 199-201
°C); *H NMR (500 MHz, Acetone-ds) 8 = 9.34 (d, J=2.0, 2H), 8.70 (s, 1H), 8.28 (dd, J=7.2, 1.4, 2H), 8.17
(dd, J=6.3, 3.3, 2H), 7.85 — 7.82 (m, 2H), 7.56 (dd, J=6.3, 3.2, 2H), 7.45 — 7.43 (m, 2H), 7.24 (d, J=1.2,
1H), 7.04 — 7.02 (m, 1H), 6.81 (s, 1H), 1.47 (s, 9H), 1.38 (s, 9H), 1.34 (s, 9H), -0.40 (s, 6H). *C{*H} NMR
(125 MHz, Acetone-ds) 6 177.28, 146.16, 145.87, 139.79, 139.49, 137.26, 136.95, 136.89, 134.80, 133.79,
132.84, 132.78, 130.54, 129.75, 129.43, 129.40, 128.85, 128.82, 126.64, 125.73, 124.18, 123.98, 120.81,
120.78,118.81, 118.79, 118.41, 40.40, 39.21, 38.58, 36.15, 35.92, 30.58, 30.55, 27.94, 27.87, 20.09, 19.91.
HRMS(ESI): m/z (Calc): CasHasNO[M+H] 620.3887; found: 620.3936

The polymers were synthesized according to the literature report.® The purity of the synthesized compound
was confirmed from 'H NMR.

PMMA
IH NMR (500 MHz, CDCl3) & = 3.59 (s, 3H), 1.97 — 1.73 (m, 2H), 1.05 — 0.78 (m, 3H).
PCMA

IH NMR (400 MHz, CDCls) & = 4.58 (s, 1H), 2.05 — 0.70 (m, 15H).

PTBMA

IH NMR (400 MHz, CDCl3) § = 2.32 — 1.66 (m, 2H), 1.42 — 1.30 (m, 12H).



'H and *C NMR spectra:
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Figure S1. *H NMR spectrum of compound DHP-tBu.
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Figure S8. HRMS spectrum of compound BDHP-tBu.
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'H NMR of the synthesized polymers:
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Photoisomerization Studies:

Photoisomerization, the process in which the absorption of photons triggers changes in molecular
configuration, was systematically explored in both the solution state and also in thin films. Throughout
this work, we subjected the samples to the light exposure, continuously monitoring the changes
employing a combination of spectroscopic techniques, including UV-Vis and NMR spectroscopy.

A) Absorption spectra of photoswitching:
The photoisomerization studies were carried out using various light sources, including UV (370 nm, 254

nm), blue (456 nm), green (525 nm), and red (640 nm) Kessil lamps, The average intensity of PR160 series
is 399 mW/cm? (measured from 1 cm distance) except for 254 nm intensity was 8 mW/cm?. The
experiments were performed in quartz glass cuvettes with a path length of 1 cm and HPLC grade solvents.
The photostationary state (PSS) distributions were calculated using the following equation:

Yopen = (Ao-Apss /Ao) X 100%

where, y=Percentage of molecules undergone ring opening at the PSS.

Ao = Absorbance at initial state; Apss= Absorbance at PSS

20
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Figure S14. Absorbance spectra of photoisomerization: (a) DHP-tBu (b) BDHP-tBu in acetonitrile solution
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B) Arrhenius and Eyring plots:

The freshly prepared solutions of the photochromic compounds were subjected to exposure of light at
distinct wavelengths (525 nm or 640 nm) corresponding to their photochemical characteristics until a
photostationary state (PSS) rich in the photoisomerized open form was attained. To initiate the reverse
reaction, the same samples rich in the opened form of PSS were transferred to a dark setting within a Peltier
module (temperature specified in the graphs). Absorbance vs time data at each of the temperatures were
fitted to exponential plots. The fitted parameters were used to construct the Arrhenius plot that allowed
determination of the thermal half-lives of the open forms at 298 K by extrapolation.
the rate constants (k) for the thermal reversal were determined using the following equation:

[CPD] = [CPD]ye™*T
Half-life (¢1/2)= 0.693/k.
Arrhenius equation, Ink = In A — E_,/RT, from the plot of In k vs 1/T, we got, slope = —E,; /R and
Eyring equation, In (k/T) = —AH =/RT + In (k,/h) + AS /R, from the plot of In (k/T) vs 1/T,
we got

slope = —AH +/R and intercept = AS =/R.
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Figure S15. Kinetics plot of DHP-tBu at variable temperatures (343 K, 348 K, and 353 K, respectively)

for the open to closed isomer thermal reversal. The absorbance at 350 nm at each temperature was fitted
to an exponential fit.
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the open to closed isomer thermal reversal. The absorbance at 409 nm at each temperature was fitted to an

exponential fit.
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Figure S20. Arrhenius plot and Eyring plot of compound NDHP-tBu.
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Table S1. Photochemical and thermodynamic properties of the tert-butyl-substituted derivatives (DHP-

tBu, BDHP-tBu, NDHP-tBu) in solution (10 uM in acetonitrile).

Compounds PSS in PSS254 nm Activation Enthalpy of ti (h) at
respective _ energy (E.) | activation (AH?) | 298K
Vs (ring closed | for reverse for reverse

isomer) reaction reaction

(ring opened (kcal/mol) (kcal/mol)
isomer)

DHP-tBu 95% with 74% 25.02+£0.54 |24.33+£0.54 61 h
525 nm

BDHP-tBu 99% with 84% 24.01£0.06 | 23.33+0.07 55 h
640 nm

NDHP-tBu 99% with 90% 22.75+£0.10 | 22.08+0.10 14 h
640 nm
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Photoisomerization quantum yield

Quantum yield has been calculated using previously reported method.”

The rate of a unidirectional photochemical reaction initiated with monochromatic light is given by:
_ qinPa-B _ —e4[A]l
Tpop =~ (1 — 107&aldly (1)

In our case, since the value of absorbance of the compounds DHP-tBu (at 525 nm), BDHP-tBu and NDHP-
tBu (at 640 nm, wavelength at which the quantum yield was measured) was much less than 0.4, Taylor
series expansion of the exponential function and subsequent truncation at the linear term was carried out
leading to a first-order rate equation (2). This equation can be further expressed in terms of the quantum
yield and the observed first-order rate constant, photon flux and other known measurable quantities for the
sample (see below) leading to equation (3):

Tasp = qinPaspal V [A] 2)

kV

- ®

)
A-B Qin€al In 10

Where @ = quantum yield; k= rate constant (obtained from the exponential fit of a graph of A vs. time);
V = sample volume; £,= molar extinction coefficient; [ = pathlength; and g = molar photon flux.

Molar photon flux:

PA
hCNA

din = 4)

where P = power (of the laser); A = pump wavelength; 4 = Planck’s constant; ¢ = speed of light; and N4 =
Avogadro’s number.
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Table S2. Estimation of quantum yield for the forward photoisomerization of in acetonitrile.

Compound Wavelength Extinction Rate Photon Flux | Quantum yield
(A)(nm) coefficient (e4) | constant (k) (qin) (10®)
at 51 (&) (107
(LmolZ*cm™)
DHP-tBu 525 2500 0.0021 0.878 0.042
BDHP-tBu 640 4100 0.1376 1.07 1.36
NDHP-tBu 640 5700 0.2244 1.07 1.60
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Figure S22. *H NMR spectra of a) DHP-tBu, b) BDHP-tBu and ¢c) NDHP-tBu before irradiation (red) and
after irradiation (525 nm for 50 min in case of DHP-tBu and 640 nm for 10 min for the other two
derivatives). All spectra acquired in Acetone-d6 with 50 mM compounds. The chemical shifts in the
negative region disappeared upon photoisomerization as the ring opening accompanies loss of aromaticity.
Also, a significant change of chemical shift in the aromatic region have been observed.

Sample preparation for thin film studies:

Quartz slides (30 x 25 mm) were sonicated in isopropanol and acetone and dried. Meanwhile, a polymer
and compound composite has been prepared with 0.5%, 1%, 2.5%, 5% and 10 % (W/w%) compounds.
Then, this composite was dissolved in the required amount of chloroform and hexane mixture (1:1). When
the mixture had dissolved completely. The mixture was spin-coated (750 rpm for 60 seconds) on the quartz
slide and then kept for 60 minutes at 50 °C to evaporate off any residual solvent. The protocol consistently
yielded films of adequate thickness, smoothness, and uniformity.

Table S3. Film preparation solution concentrations:

Compounds Polymers Compounds in 100 mg of Concentration
composite mixture (chloroform: hexane 1:1)
(polymer + compound)
(W/'w%)

DHP-tBu/BDHP- | PTBMA/PCMA/PMMA 0.5 100 mg per 0.5 ml
tBu/NDHP-tBu 1 100 mg per 1 ml
2.5 100 mg per 2.5 ml

5 100 mg per 5 ml

10 100 mg per 10 ml

Photoisomerization in thin films:

The experimental procedure of photoisomerization studies in thin films is quite similar to solution state
studies. Here, the prepared films are analyzed using UV-vis spectroscopic technique. First, the absorption
spectrum of the film is recorded in the dark to get the spectrum of the closed isomer (DHP-tBu, BDHP-tBu,
NDHP-tBu). Then, the film is irradiated with the desired wavelength of a light source to induce the
photoisomerization process. The change in the UV absorbance spectra have been monitored with regular
intervals of time until it reaches a photostationary state (PSS). Similarly, the reverse isomerization can also
be monitored by following the same procedure, starting with the corresponding open isomers.
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Figure S23. Absorption spectra of DHP-tBu at 298 K in (a) PTBMA (b) PCMA with several PSS
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Table S4. Photochemical properties of the tert-butyl-substituted derivatives (DHP-tBu, BDHP-tBu,
NDHP-tBu) in spin coated thin films.

Compounds | Polymer | PSS of opened | PSS of rate constants | Goodness of | ti, (min)
matrix form (closed to | closed (k) (min™) for | fit value (R?) | at 338K
open). 525 nm | form the thermal
for DHP-tBu (opento | reversal at 338
and 640 nm closed) K
for other two with 254
derivative. nm
PTBMA 95 60 0.0269 0.996 25.8
DHP-tBu PCMA 93 68 0.0240 0.995 28.9
PMMA 88 62 0.0207 0.995 335
PTBMA | 89 83 0.0904 0.999 111
BDHP-tBu PCMA 86 74 0.0408 0.999 17.0
PMMA 88 75 0.0373 0.999 18.6
PTBMA 94 77 0.1433 0.999 4.8
NDHP-tBu PCMA 91 81 0.0865 0.997 8.1
PMMA 92 73 0.0801 0.999 8.7
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Figure S30. A zoomed in normalized absorption spectra of a) DHP-tBu b) BDHP-tBu at room temperature
in different % (w/w) loading of sample in PMMA environment, showing a small blue shift of Amax.
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Figure S31. Absorption spectra of BDHP-tBu in (a) PTBMA (b) PCMA and ¢) PMMA with several PSS
distribution upon exposure to visible light only. d) Up to 50 switching cycles for BDHP-tBu in PTBMA
upon alternate irradiation with 640 nm and 456 nm light.
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distribution upon exposure to visible light only. d) Up to 50 switching cycles for NDHP-tBu in PTBMA

upon alternate irradiation with 640 nm and 456 nm light.
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Figure S33. DSC curves of (a) PTBMA (b) PCMA at a heating rate of 5 °C/min.
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Figure S34. Kinetics for ring opening photoisomerization of a) DHP-tBu b) DHP in acetonitrile under
identical conditions (fitted to an exponential fit to get k).

k1/k4=1.5;
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From the result of photochemical ring opening using 10 uM solution in acetonitrile, it is clear that the
photochemical ring opening of DHP-tBu (with pivaloyl group protected 4-aminophenyl substituent) is 1.5
times faster compared to DHP (without any substitution) under identical conditions.
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Figure S35. Thermal analysis of (a) DHP-tBu (b) BDHP-tBu and (c) NDHP-tBu, TGA plots showing the

decomposition of the sample after 350 °C.
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Figure S36. Snapshots taken before and after exposure to light on the solid samples. To compare our results
with pure solid-state photoswitching, we conducted tests with prolonged irradiation in the solid state but
did not observe any significant color change. This suggests that the polymer matrix provides a suitable
environment for achieving fast and efficient photoswitching in thin films.
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