Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Ultralong Room Temperature Phosphorescence in Cd-MOFs Regulated by the Multimode Coordination Configuration of Niacin Ligand

Zheng Wang,^a Chen-Qi Li,^a Jia-Yu Zhu,^a Xin-Qi Chen^a, Meng-Yang Li^b and Dan Wang^{*a}

^a Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
 ^b School of Physics, Xidian University, Xi'an 710071, China.

Corresponding author:

E-mail address:

wangdan0919@163.com (D. Wang)

Figure S1. FT-IR spectra of SUST-P1, SUST-P2 and SUST-P3.

Figure S2. PXRD pattern of SUST-P1, SUST-P2 and SUST-P3: as-synthesized and simulated.

Figure S3. TGA curves of SUST-P1, SUST-P2 and SUST-P3.

Figure S4. The coordination modes of SUST-P1~3.

Figure S5. The 3D framework and simplified network of SUST-P1.

Figure S6. The asymmetric unit of SUST-P2.

Figure S7. The 3D framework and simplified network of SUST-P2.

Figure S8. a) 2D framework structure of SUST-P3. b, c) Intermolecular π - π interactions in SUST-P3. P3.

Figure S9. The excitation ($\lambda_{em} = 450 \text{ nm}$ or 510 nm) and emission ($\lambda_{ex} = 340 \text{ nm}$) spectra of solid HL at room temperature.

Figure S10. The decay profile for HL in the solid state at room temperature. Emission wavelength were set at 430 nm and 510 nm.

Figure S11. Solid UV-Vis absorption spectra of SUST-P1, SUST-P2 and SUST-P3.

Figure S12. The CIE coordinates corresponding to the prompt and delayed (1 ms) photoluminescence spectra ($\lambda_{ex} = 340$ nm).

Figure S13. Time-dependent delayed spectra of SUST-P1, SUST-P2 and SUST-P3.

Figure S14. Under RT and 77 K, the decay curves of SUST-P1, SUST-P2 and SUST-P3 at 436, 430 and 420 nm, respectively.

Figure S15. Temperature-dependent delayed spectra (delay 1 ms) of SUST-P1~P3 as the temperature dropped from 300 K to 77 K under 340 nm excitation.

Figure S16. CIE coordinates corresponded to temperature-dependent prompt emissions of SUST-P1, SUST-P2 and SUST-P3 from 77 to 300 K in solid state.

Figure S17. (a) The emission spectra of SUST-P1, SUST-P2 and SUST-P3 in air and vacuum at RT. (b) The delayed spectra of the three MOFs in air and vacuum at RT.

Figure S18. The decay curves of SUST-P1, SUST-P2 and SUST-P3 in air and vacuum at RT.

Figure S19. The excitation spectra of SUST-P1, SUST-P2 and SUST-P3 (room temperature, solid state).

Figure S20. Excitation wavelength-dependent prompt emission spectra of SUST-P1, SUST-P2 and SUST-P3, respectively.

Figure S21. The CIE coordinates of SUST-P1, SUST-P2 and SUST-P3 corresponded to the excitation wavelength-dependent prompt emission spectra.

Figure S22. Long persistent luminescence (LPL) of SUST-P1, SUST-P2 and SUST-P3 upon the excitation at 405 nm.

Figure S23. Excitation-dependent delayed emission spectra of SUST-P1, SUST-P2 and SUST-P3, respectively.

Table 51. Ballinary of 24 1a	iy erystanographie data i	of the three wich s.	
Identification code	SUST-P1	SUST-P2	SUST-P3
Empirical formula	$C_{12}H_8CdN_2O_4\\$	$C_{17}H_{21}CdN_3O_6$	$C_{12}H_8CdN_2O_4\\$
Formula weight	356.60	475.77	356.60
Temperature/K	240(2)	240.00(10)	240.00(10)
Crystal system	monoclinic	orthorhombic	monoclinic
Space group	$P2_{1}/n$	$Pna2_1$	$P2_{1}/n$
a/Å	10.2408(19)	16.9934(5)	12.4315(11)
b/Å	10.1860(19)	11.9880(4)	7.7773(5)
c/Å	12.705(2)	9.4740(3)	12.7689(8)
$\alpha/^{\circ}$	90	90	90
β/°	106.677(19)	90	104.875(8)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	1269.5(4)	1930.01(10)	1193.17(16)
Ζ	4	4	4
$ ho_{calc}g/cm^3$	1.866	1.637	1.985
µ/mm ⁻¹	13.909	9.406	14.800
F(000)	696.0	960.0	696.0
Crystal size/mm ³	$0.170 \times 0.120 \times 0.080$	$0.17 \times 0.13 \times 0.11$	$0.13 \times 0.1 \times 0.05$
Radiation	CuKa ($\lambda = 1.54184$)	$CuK\alpha (\lambda = 1.54184)$	CuKa ($\lambda = 1.54184$)
2Θ range for data collection/°	11.328 to 133.15	9.028 to 133.184	8.856 to 132.01
	$-12 \le h \le 12$,	$-19 \le h \le 20$,	$-14 \le h \le 14$,
Index ranges	$-12 \le k \le 11$,	$-8 \le k \le 14$,	$-6 \le k \le 9,$
	$-15 \le l \le 10$	$-11 \le l \le 7$	$-15 \le l \le 13$
Reflections collected	4002	3667	3263
Independent reflections	2215 [$R_{int} = 0.0921$,	2337 [$R_{int} = 0.0369$,	2057 [$R_{int} = 0.0318$,
independent reflections	$R_{sigma} = 0.0830]$	$R_{sigma} = 0.0591$]	$R_{sigma} = 0.0396$]
Data/restraints/parameters	2215/0/172	2337/269/261	2057/0/172
Goodness-of-fit on F ²	1.113	1.022	1.096
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0974, wR_2 = 0.2167$	$R_1 = 0.0364, wR_2 = 0.0860$	$R_1 = 0.0442, wR_2 = 0.1231$
Final R indexes [all data]	$R_1 = 0.1134, wR_2 = 0.2246$	$R_1 = 0.0443, wR_2 = 0.0930$	$R_1 = 0.0504, wR_2 = 0.1306$
Largest diff. peak/hole / e Å ⁻³	2.23/-1.71	0.66/-0.69	1.72/-1.17
Flack parameter		0.024(16)	

Table S1. Summary of X-ray crystallographic data for the three MOFs.

				SUST-P1				
Cd1	02		2.220(7)	N	1	Cd1 ⁴		2.321(7)
Cd1	O3		2.293(7)	Ν	2	C7		1.339(12)
Cd1	$N1^1$		2.321(7)	Ν	2	C11		1.356(13)
Cd1	$N2^2$		2.324(8)	Ν	2	Cd1 ⁵		2.324(8)
Cd1	O1 ³		2.392(7)	С	1	C2		1.367(16)
Cd1	O4		2.492(8)	С	2	C3		1.373(14)
Cd1	C12		2.730(11)	С	3	C4		1.445(15)
01	C6		1.135(12)	С	4	C5		1.333(14)
01	Cd1 ³		2.392(7)	С	4	C6		1.534(13)
02	C6		1.276(13)	С	7	C8		1.323(14)
03	C12		1.260(13)	С	8	C9		1.397(15)
04	C12		1.225(12)	C	9	C10		1.361(12)
N1	C1		1.259(14)	С	10	C11		1.370(13)
N1	C5		1.349(12)	C	10	C12		1.527(14)
02	Cd1	O3	146.7(3)	С	5	N1	Cd1 ⁴	111.5(6)
02	Cd1	$N1^1$	88.6(3)	C	7	N2	C11	116.1(8)
03	Cd1	$N1^1$	91.3(3)	С	7	N2	Cd1 ⁵	127.2(7)
O2	Cd1	N2 ²	92.0(3)	С	11	N2	Cd1 ⁵	116.7(6)
O3	Cd1	N2 ²	91.6(3)	Ν	1	C1	C2	128.1(9)
$N1^1$	Cd1	N2 ²	173.8(3)	С	1	C2	C3	116.5(10)
O2	Cd1	O1 ³	130.4(3)	С	2	C3	C4	118.2(10)
03	Cd1	O1 ³	82.8(2)	С	5	C4	C3	116.1(9)
$N1^1$	Cd1	O1 ³	88.0(3)	С	5	C4	C6	121.8(10)
N2 ²	Cd1	O1 ³	86.9(3)	С	3	C4	C6	121.8(8)
02	Cd1	O4	92.8(3)	С	4	C5	N1	125.9(10)
03	Cd1	O4	53.9(2)	О	1	C6	02	123.4(9)
$N1^1$	Cd1	O4	90.7(3)	О	1	C6	C4	123.9(10)
N2 ²	Cd1	O4	95.4(3)	О	2	C6	C4	112.7(8)
O1 ³	Cd1	O4	136.7(2)	С	8	C7	N2	125.5(10)
02	Cd1	C12	119.4(3)	С	7	C8	С9	117.6(9)
03	Cd1	C12	27.3(3)	С	10	C9	C8	119.5(10)
$N1^1$	Cd1	C12	90.0(3)	С	9	C10	C11	118.9(10)
$N2^2$	Cd1	C12	95.0(3)	С	9	C10	C12	121.5(9)
O1 ³	Cd1	C12	110.1(3)	С	11	C10	C12	119.7(8)
04	Cd1	C12	26.6(3)	Ν	2	C11	C10	122.3(8)
C6	01	Cd1 ³	174.4(7)	0	4	C12	O3	122.3(10)
C6	02	Cd1	101.3(6)	0	4	C12	C10	121.0(10)
C12	03	Cd1	96.0(6)	Ο	3	C12	C10	116.6(8)

Table S2. Selected bond distances (Å) and bond angles (°) for the three MOFs.

C12	O4	Cd1	87.6(7)		O4	C12	Cd1	65.8(6)
C1	N1	C5	115.1(8)		O3	C12	Cd1	56.7(5)
C1	N1	Cd1 ⁴	132.7(6)		C10	C12	Cd1	169.4(6)
				SUST-P2				
Cd1	02		2.332(5)		N2	C7		1.339(11)
Cd1	01		2.483(7)		C1	C2		1.358(13)
Cd1	03		2.244(7)		C11	C10		1.382(12)
Cd1	05		2.332(8)		C7	C8		1.388(13)
Cd1	N11		2.377(7)		C3	C2		1.388(12)
Cd1	N22		2.322(7)		C3	C4		1.386(12)
Cd1	C6		2.737(9)		C12	C10		1.509(12)
02	C6		1.263(11)		C8	С9		1.376(12)
O4	C12		1.244(12)		C10	С9		1.393(13)
01	C6		1.245(11)		C4	C6		1.505(12)
O3	C12		1.259(13)		C4	C5		1.396(13)
05	C13		1.42(2)		C14	C13		1.50(2)
05	C13		1 42(2)		C14	C13		1 49(2)
05	А		1.42(2)		А	А		1.48(2)
N1	Cd13		2.377(7)		06	C15		1.199(18)
N1	C1		1.326(11)		N3	C17		1.408(19)
N1	C5		1.328(11)		N3	C16		1.49(2)
N2	Cd14		2.322(7)		N3	C15		1.291(15)
N2	C11		1.337(10)					
O2	Cd1	01	54.4(2)		C7	N2	Cd14	119.4(5)
O2	Cd1	N11	86.9(3)		N1	C1	C2	123.6(9)
O2	Cd1	C6	27.4(2)		N2	C11	C10	122.7(8)
01	Cd1	C6	27.0(2)		N2	C7	C8	121.9(8)
O3	Cd1	02	87.2(3)		C4	C3	C2	117.7(9)
O3	Cd1	01	140.0(3)		04	C12	03	124.9(9)
O3	Cd1	05	83.3(3)		04	C12	C10	118.9(9)
O3	Cd1	N11	93.0(3)		03	C12	C10	116.2(8)
O3	Cd1	N22	132.7(3)		C1	C2	C3	119.5(9)
O3	Cd1	C6	114.1(3)		C9	C8	C7	119.3(9)
05	Cd1	02	94.7(3)		C11	C10	C12	121.6(8)
05	Cd1	01	88.8(3)		C11	C10	С9	118.5(8)
05	Cd1	N11	175.9(3)		C9	C10	C12	119.8(8)
05	Cd1	C6	92.8(3)		C3	C4	C6	121.0(8)
N11	Cd1	01	95.2(3)		C3	C4	C5	118.6(8)
N11	Cd1	C6	90.4(3)		C5	C4	C6	120.4(8)
N22	Cd1	02	140.1(2)		02	C6	Cd1	58.2(4)

N22	Cd1	01	86.4(2)	02	C6	C4	117.4(8)
N22	Cd1	O5	91.0(3)	01	C6	Cd1	65.0(5)
N22	Cd1	N11	90.1(2)	01	C6	02	123.1(8)
N22	Cd1	C6	113.0(3)	01	C6	C4	119.5(8)
C6	02	Cd1	94.5(5)	C4	C6	Cd1	174.3(6)
C6	01	Cd1	87.9(5)	C8	С9	C10	118.8(9)
C12	03	Cd1	106.5(6)	N1	C5	C4	122.7(9)
C13	05	Cd1	127(2)	05	C13	C14	117(4)
C13A	A O 5	Cd1	136(2)	05	C13 A	C14A	109(3)
C1	N1	Cd13	122.2(6)	C17	N3	C16	116.3(11)
C5	N1	Cd13	119.8(6)	C15	N3	C17	123.3(15)
C5	N1	C1	117.9(8)	C15	N3	C16	120.0(14)
C11	N2	Cd14	121.9(6)	06	C15	N3	123.1(15)
C11	N2	C7	118.7(7)				
			SUST-P3				
Cd1	01		2.252(4)	N1	C1		1.352(8)
Cd1	02		2.469(5)	N1	C5		1.331(8)
Cd1	O31		2.318(5)	N2	C7		1.359(8)
Cd1	O41		2.394(5)	N2	C11		1.336(8)
Cd1	N1 ²		2.310(5)	C1	C2		1.390(9)
Cd1	N2		2.301(5)	C2	C3		1.378(9)
Cd1	C6		2.682(6)	C3	C4		1.389(9)
Cd1	C12 ¹		2.685(6)	C4	C5		1.393(8)
01	C6		1.252(8)	C4	C6		1.503(8)
O2	C6		1.243(8)	C7	C8		1.363(10)
O3	Cd1 ³		2.318(5)	C8	C9		1.382(9)
O3	C12		1.240(8)	C9	C10		1.389(9)
O4	Cd1 ³		2.394(5)	C10	C11		1.379(9)
O4	C12		1.256(8)	C10	C12		1.498(9)
N1	Cd1 ⁴		2.310(5)	C12	Cd1 ²		2.685(6)
01	Cd1	O2	55.15(16)	C1	N1	Cd1 ⁴	122.4(4)
01	Cd1	O31	102.1(2)	C5	N1	Cd1 ⁴	118.0(4)
01	Cd1	O41	97.40(17)	C5	N1	C1	118.5(5)
01	Cd1	N1 ²	127.88(18)	C7	N2	Cd1	120.5(4)
01	Cd1	N2	117.2(2)	C11	N2	Cd1	120.4(4)
01	Cd1	C6	27.68(18)	C11	N2	C7	117.8(6)
01	Cd1	C12 ¹	100.46(18)	N1	C1	C2	121.8(6)
02	Cd1	C6	27.53(18)	C3	C2	C1	119.2(6)
O2	Cd1	C121	154.96(18)	C2	C3	C4	119.2(5)

O31	Cd1	02	141.6(2)	C3	C4	C5	118.2(5)
O31	Cd1	O41	55.34(17)	C3	C4	C6	121.0(5)
O31	Cd1	C6	125.0(2)	C5	C4	C6	120.7(5)
O31	Cd1	C12 ¹	27.46(18)	N1	C5	C4	123.0(5)
O41	Cd1	O2	146.00(17)	01	C6	Cd1	56.7(3)
O41	Cd1	C6	122.20(18)	01	C6	C4	118.6(5)
O41	Cd1	C12 ¹	27.89(18)	O2	C6	Cd1	66.7(3)
N1 ²	Cd1	O2	84.33(17)	O2	C6	01	123.2(6)
$N1^2$	Cd1	O31	90.14(19)	O2	C6	C4	118.2(5)
$N1^2$	Cd1	O41	129.41(17)	C4	C6	Cd1	172.4(4)
N1 ²	Cd1	C6	107.59(17)	N2	C7	C8	121.8(6)
N1 ²	Cd1	C12 ¹	111.32(18)	C7	C8	C9	120.0(6)
N2	Cd1	O2	89.47(19)	C8	C9	C10	118.8(6)
N2	Cd1	O3 ¹	128.7(2)	C9	C10	C12	121.2(6)
N2	Cd1	O41	86.55(17)	C11	C10	C9	118.0(6)
N2	Cd1	N1 ²	90.43(19)	C11	C10	C12	120.7(6)
N2	Cd1	C6	103.52(19)	N2	C11	C10	123.6(6)
N2	Cd1	C121	109.11(19)	O3	C12	Cd1 ³	59.6(3)
C6	Cd1	C121	128.07(19)	03	C12	O4	122.6(6)
C6	01	Cd1	95.6(4)	O3	C12	C10	119.2(6)
C6	02	Cd1	85.8(4)	O4	C12	Cd1 ³	63.1(3)
C12	03	Cd1 ³	93.0(4)	O4	C12	C10	118.2(6)
<u>C12</u>	04	Cd1 ³	89.1(4)	C10	C12	Cd1 ³	174.9(5)

Table S3. The CIE coordinates of emission of SUST-P1, SUST-P2 and SUST-P3 under differenttemperatures.

emperatures.						[
SUS	T-P1		SUS	ST-P2		SUS	Г-Р3	
Temperature (K)	Х	Y	Temperature (K)	Х	Y	Temperature (K)	Х	Y
300	0.22	0.25	300	0.21	0.22	300	0.21	0.22
260	0.22	0.26	260	0.21	0.23	260	0.21	0.22
220	0.22	0.26	220	0.21	0.23	220	0.21	0.22
180	0.23	0.27	180	0.22	0.24	180	0.21	0.23
140	0.23	0.28	140	0.22	0.24	140	0.21	0.23
100	0.23	0.29	100	0.22	0.24	100	0.21	0.22
77	0.23	0.29	77	0.22	0.24	77	0.21	0.22

SUST-P1			SUST-P2			SUST-P3			
Wavelength (nm)	Х	Y	Wavelength (nm)	Х	Y	Wavelength (nm)	Х	Y	
340	0.20	0.21	340	0.16	0.11	340	0.21	0.22	
360	0.19	0.20	360	0.16	0.12	360	0.20	0.18	
380	0.19	0.20	380	0.16	0.15	380	0.20	0.21	
400	0.19	0.24	400	0.17	0.32	400	0.19	0.21	
420	0.23	0.42	420	0.19	0.36	420	0.22	0.39	
440	0.28	0.49	440	0.20	0.35	440	0.27	0.46	

Table S4. The CIE coordinates of prompt emission of SUST-P1, SUST-P2 and SUST-P3 upon different excitations.

Table S5. Absolute quantum yield (Φ) of SUST-P1, SUST-P2 and SUST-P3 at different excitation wavelength at RT.

Excitation	Quantum Yield (Ф)						
wavelength (nm)	SUST-P1	SUST-P2	SUST-P3				
340	0.045	0.114	0.081				
345	0.055	0.151	0.080				
350	0.068	0.174	0.074				
360	0.082	0.185	0.063				
380	0.105	0.166	0.072				
400	0.127	0.132	0.066				
420	0.119	0.073	0.045				
440	0.097	0.041	0.001				

Table S6. Quantum yields (Φ) and lifetimes (τ) of the three MOFs at RT in the air.

MOFs	$\lambda_{\mathrm{F}} \left(\mathrm{nm} \right)$	λ_{P} (nm)	$\tau_{\rm F} \left({\rm ns} \right)$	τ_{P} (ms)	Φ_{F} (%)	Φ_{P} (%)
SUST-P1	436	500	2.44	24.55	11.1	1.6
SUST-P2	430	490	1.13	18.95	16.5	2.0
SUST-P3	420	500	1.15	120.99	4.2	3.9
MOFs	$\mathbf{K}^{F}_{\mathbf{r}}\left(\mathbf{s}^{-1}\right)$	$\mathbf{K}^{F}_{\mathbf{nr}}$ (s	⁻¹) K _{ISC}	(s ⁻¹)]	K_{r}^{P} (s ⁻¹)	$\mathbf{K}_{nr}^{P}(\mathbf{s}^{-1})$
SUST-P1	4.55×10 ⁷	3.58×1	.0 ⁸ 6.5	6×10 ⁶	0.65	40.1
SUST-P2	1.46×10 ⁸	7.21×1	.0 ⁸ 1.7	7×10 ⁷	1.06	51.7
SUST-P3	3.65×10 ⁷	7.99×1	.0 ⁸ 3.3	9×10 ⁷	0.32	7.94
$X_{nr}^F = (1 - \Phi_F - \Phi_F)$	$\Phi_{\rm P})/\tau_{\rm F}$	$K^{F}_{r} = \Phi_{F}/\tau_{F}$	KI	$_{\rm SC} = \Phi_{\rm p}/\tau_{\rm F}$		

 $\mathbf{K}_{nr}^{P} = (\mathbf{1} \cdot \boldsymbol{\Phi}_{\mathrm{F}} \cdot \boldsymbol{\Phi}_{\mathrm{P}})/\tau_{\mathrm{F}} \qquad \mathbf{K}_{r}^{P} = (\mathbf{1} \cdot \boldsymbol{\Phi}_{\mathrm{P}})/\tau_{\mathrm{p}}$ $\mathbf{K}_{r}^{P} = (\mathbf{1} \cdot \boldsymbol{\Phi}_{\mathrm{P}})/\tau_{\mathrm{p}}$