Supplementary Information (Sl) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2024

Supporting Information

Thb(lll)-Functionalized MOF Hybridized Bis-crosslinked
Networked Hydrogel Luminescent Films for Arginine and

Dopamine Hydrochloride Sensing and Anticounterfeiting

Jiaxuan Pan?, Jiazhen Lu?, Yichen Shang!, Ying Li* *and Bing Yan®*

1 School of Materials and Chemistry, University of Shanghai for Science and

Technology, Shanghai 200093, P. R. China

2 Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical

Science and Engineering, Tongji University, Shanghai 200092, China

Correspondence: liying@usst.edu.cn. (Y.Li); byan@tongji.edu.cn (B. Yan)

S1



1. Instruments

Fourier transform infrared (FT-IR) spectra were obtained by using the SPECTRUM 100 instrument

provided by PerkinElmer, employing the KBr pellet Pressing method. X-ray photoelectron

spectroscopy (XPS) analysis was conducted using the K-Alpha+ instrument from Thermo Fisher

Scientific. The X-ray source utilized was a monochromatic Al Ka source. Scanning electron

microscopy (SEM) measurements and energy-dispersive spectroscopy (EDS) were performed using

a Sigma 300 instrument with an accelerating voltage of 10 kV. The RF-5301 fluorescence

spectrophotometer provided by Shimadzu Corporation, Japan, was employed to acquire excitation

and emission spectra. A steady-state transient fluorescence spectrometer (Edinburgh FLS1000)

was used to obtain the fluorescence lifetime and quantum yield data. X-ray diffraction (XRD)

analysis utilized a BRUKER-supplied D8 ADVANCE instrument with monochromatic Cu Ka

excitation. Data were acquired at a 2° min~! scanning rate within the 5° < 20 < 25° range. A steady-

state transient fluorescence spectrometer (Edinburgh FLS1000) was used to obtain the

fluorescence lifetime and quantum yield data.
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2.Supporting Figures and Tables
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Figure S1(a) XRD patterns of Eu-MOF and Simulated Eu-MOF. (b)Eu-MOF@PVA/SA
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153 €
136K
118
102
85K
88K
51K

34

b BuTo
A Eu Lb BT T

17K

Du(’DO 100 200 300 400 500 600 100 800 900

Lsec:1638  0Cnts 0000keV  Det: Octane Elect Plus

S3



Figure S2 (a). SEM picture of Eu-MOF, (b). EDS energy spectra of Tb@Eu-MOF@PVA/SA
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Figure S3: the simulated 3D structure of Eu-MOF (CCDC:862207)
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Figure S4 XPS spectra of Eu-MOF@PVA/SA and Tb@Eu-MOF@PVA/SA
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Figure S5. (a) Excitation spectra of Eu-MOF@PVA/SA, (b) The emission spectrum of

Tb@Eu-MOF@PVA/SA (Aex = 260 nm).
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Figure S6 Jablonsky level diagrams of Eu-MOF.
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Figure S7 schematic diagram of the antenna effect of the ligand with Tbh3*
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Figure S8 Comparison of fluorescence intensity of Tb@Eu-MOF@PVA/SA in different

PH solutions.
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Figure S9 The fluorescence changes of Tb@Eu-MOF@PVA/SA on days 1, 3, 5, and 7in

the air at room temperature.
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Figure S$10 (a) Emission spectra (Aex = 260 nm) of Tb@Eu-MOF@PVA/SA in various species solution

(1mM), (b) the corresponding CIE coordinates of Tb@Eu-MOF@PVA/SA in Arg or DH solution
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Figure S11 The XRD patterns of Eu-MOF with the DH treatment

S8

0.8



H,BTEC DQ

o

(A

-8.10ev @6 -6.79ev

-3.51ev -3.55ev

LUMO

HOMO

%

9
9

Figure $12 LUMO and HOMO orbitals of the H4;BTEC and DQ model.

2  Tb@Eu-MOF@PVA/SA 1°=556.91ps
2000 A
Th@Eu-MOF@PVA/SA + DH T =348.02us
peak of 611 nm
15004
72
~N—
=
& 1000
@
5004
04
110 500 1000 1500 2000 2500 3000

Time (ps)
Figure S13 Lifetime decay curves of Tbo@Eu-MOF@PVA/SA at 611 nm in the absence

and presence of DH
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Figure S14 Emission spectra (Aex = 260 nm) of Eu-MOF with Arg and without Arg
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Figure S15 Lifetime decay curves of Tb@Eu-MOF@PVA/SA at 540 nm in the absence

and presence of Arg
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Figure S16 (a)Tensile stress-strain curve of Tb@Eu-MOF@PVA/SA, (b)Stress-strain

curve of Tb@Eu-MOF@PVA/SA at 80 % compression variable
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Figure S17 photos of To@Eu-MOF@PVA/SA stretching process.
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Figure S18 photos of To@Eu-MOF@PVA/SA compression and recovery process
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Figure S19: The anti-interference performance of To@Eu-MOF@PVA/SA for (a)DH
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detection and (b)Ar
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Table S1 Analysis report of the EDS energy spectra of Tbo@Eu-MOF@PVA/SA.

Material Element Weight%
C 69.58
o 2331
Eu 1.09
Tb@Eu-MOF@PVA/SA Tb 6.02
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