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1. Instruments

Fourier transform infrared (FT-IR) spectra were obtained by using the SPECTRUM 100 instrument 

provided by PerkinElmer, employing the KBr pellet Pressing method. X-ray photoelectron 

spectroscopy (XPS) analysis was conducted using the K-Alpha+ instrument from Thermo Fisher 

Scientific. The X-ray source utilized was a monochromatic Al Kα source. Scanning electron 

microscopy (SEM) measurements and energy-dispersive spectroscopy (EDS) were performed using 

a Sigma 300 instrument with an accelerating voltage of 10 kV. The RF-5301 fluorescence 

spectrophotometer provided by Shimadzu Corporation, Japan, was employed to acquire excitation 

and emission spectra. A steady-state transient fluorescence spectrometer (Edinburgh FLS1000) 

was used to obtain the fluorescence lifetime and quantum yield data. X-ray diffraction (XRD) 

analysis utilized a BRUKER-supplied D8 ADVANCE instrument with monochromatic Cu Kα 

excitation. Data were acquired at a 2° min−1 scanning rate within the 5° < 2θ < 25° range. A steady-

state transient fluorescence spectrometer (Edinburgh FLS1000) was used to obtain the 

fluorescence lifetime and quantum yield data.
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2.Supporting Figures and Tables

Figure S1(a) XRD patterns of Eu-MOF and Simulated Eu-MOF. (b)Eu-MOF@PVA/SA 

and Eu-MOF

a b
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Figure S2 (a). SEM picture of Eu-MOF, (b). EDS energy spectra of Tb@Eu-MOF@PVA/SA

Figure S3: the simulated 3D structure of Eu-MOF (CCDC:862207)

Figure S4 XPS spectra of Eu-MOF@PVA/SA and Tb@Eu-MOF@PVA/SA
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Figure S5. (a) Excitation spectra of Eu-MOF@PVA/SA, (b) The emission spectrum of 

Tb@Eu-MOF@PVA/SA (λex = 260 nm).

Figure S6 Jablonsky level diagrams of Eu-MOF.
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Figure S7 schematic diagram of the antenna effect of the ligand with Tb3+

Figure S8 Comparison of fluorescence intensity of Tb@Eu-MOF@PVA/SA in different 

PH solutions.
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Figure S9 The fluorescence changes of Tb@Eu-MOF@PVA/SA on days 1, 3, 5, and 7in 

the air at room temperature.
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Figure S10 (a) Emission spectra (λex = 260 nm) of Tb@Eu-MOF@PVA/SA in various species solution 

(1mM), (b) the corresponding CIE coordinates of Tb@Eu-MOF@PVA/SA in Arg or DH solution

Figure S11 The XRD patterns of Eu-MOF with the DH treatment
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Figure S12 LUMO and HOMO orbitals of the H4BTEC and DQ model.

Figure S13 Lifetime decay curves of Tb@Eu-MOF@PVA/SA at 611 nm in the absence 

and presence of DH
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Figure S14 Emission spectra (λex = 260 nm) of Eu-MOF with Arg and without Arg

Figure S15 Lifetime decay curves of Tb@Eu-MOF@PVA/SA at 540 nm in the absence 

and presence of Arg
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Figure S16 (a)Tensile stress-strain curve of Tb@Eu-MOF@PVA/SA, (b)Stress-strain 

curve of Tb@Eu-MOF@PVA/SA at 80 % compression variable
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Figure S17 photos of Tb@Eu-MOF@PVA/SA stretching process.

Figure S18 photos of Tb@Eu-MOF@PVA/SA compression and recovery process

Figure S19: The anti-interference performance of Tb@Eu-MOF@PVA/SA for (a)DH 
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detection and (b)Ar
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Table S1 Analysis report of the EDS energy spectra of Tb@Eu-MOF@PVA/SA.

Material Element Weight%

C 69.58

O 23.31

Eu 1.09

Tb@Eu-MOF@PVA/SA Tb 6.02


