SUPPORTING INFORMATION

Green-emitting CsPbI₃ Nanorods Decorated with CsPb₂I₅ and Cs₄PbI₆ Nanoclusters

Paundra Rizky Pratama,^{*a*} Azzah Dyah Pramata,^{*a*}* Fuko Shiga,^{*b*} Jonas Carl Christopher N. Agutaya,^{*c*} Yusuke Inomata,^{*d*} Biplap Manna,^{*e*} Agung Purniawan,^{*a*} Yuji Akaishi,^{*f*}* and Tetsuya Kida^{*c*,*d*,*f**}

- ^{a.}Department of Materials Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
- ^{b.}Graduate School of Science and Technology (GSST), Kumamoto University, Kumamoto 860-

8555, Japan

- ^{c.} International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
- ^d Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- ^{e.} National Institute for Material Science Namiki (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- ^{f.} Institute of Industrial Nanomaterials (IINa), Kumamoto University, Kumamoto 860–8555, Japan

*Corresponding authors: <u>azzah@its.ac.id</u> (A. D. Pramata); <u>akaishi@kumamoto-u.ac.jp</u> (Y. Akaishi); <u>tetsuya@kumamoto-u.ac.jp</u> (T. Kida)

Figure S1. PL excitation spectra of MP-nanorods and CsPbI₃ QDs mixture measured using λ_{em} =511 nm (dashed black line) and 655 nm (dashed red line)

Figure S2. Tauc plots of direct (A) and indirect (B) band gap of as-synthesized CsPbI₃ QDs

Figure S3. Tauc plots of direct (A) and indirect (B) band gap of MP-nanorods and CsPbI₃ QDs

mixture

Figure S4. PL excitation spectra (A), PL emission (solid line), and UV-vis (dashed line) spectra (B) of CsPbI₃ QDs and MP-nanorods mixture assisted by titanium tetra isopropoxide (TTIP)

20 (Degree)

Figure S5. The XRD patterns of MP-nanorods and CsPbI₃ QDs mixture prepared using titanium tetra-isopropoxide (TTIP)

Figure S6. FTIR spectrum of dual-emitting colloidal mixture

Figure S7. PL emission (A) and UV-vis spectra (B) of colloidal solution upon the addition of tert-butyl alcohol and isopropanol

Figure S8. The XRD patterns (A) and the TEM image (B) of the ZTIB added CsPbI₃ QDs sample synthesized without the presence of excess 1-ODE.

Figure S9. The PL (solid line) and UV-vis (dashed line) spectra of ZTIB added-CsPbI₃ QDs stock solution without the presence of excess 1-ODE; The measurement was conducted in colloidal state solution using *n*-hexane as a solvent. The λ_{ex} = 365 nm was used when measuring the PL emission.

Figure S10. ¹H NMR spectra of pure and time-dependent 1-ODE were added to the CsPbI₃ QDs sample without the presence of UV light

Figure S11. UV-vis spectra of MP-nanorods and CsPbI₃ QDs colloidal mixture during the 1-ODE treatment over time

Figure S12. EDX spectrum (A) and respectfully selected area (B) of isolated MP-nanorods

Figure S13. Tauc plots for direct (A) and indirect (B) band gap of MP-nanorods

Figure S14. Phonon density of state (PDOS) spectra of α -CsPbI₃ (A), δ -CsPbI₃ (B), γ -CsPbI₃ (C), CsPb₂I₅ (D), and Cs₄PbI₆ (E)

Figure S15. The extended linear sweep voltammetry pattern (oxidation and reduction) of MP-CsPbI₃ NRs

Figure S16. The XRD pattern of MP-CsPbI₃ NRs/Cs₄PbI₆ QDs (balck line) and the baseline of solvent mixture (toluene and 1-ODE) (red line)

Phase	Maximum Charge Density	Minimum Charge Density	Band Gap
	(e/bohr ³)	(e/bohr ³)	(eV)
α-CsPbI ₃	0.79998	0.00046	2.4553
γ-CsPbI ₃	0.80317	0.00057	1.6363
δ-CsPbI ₃	0.80254	0.00062	2.7282
CsPb ₂ I ₅	0.80323	0.00069	1.9032
Cs ₄ PbI ₆	0.80175	0.00016	3.4031

Table S1. Simulated band gap and charge density of each crystal phases