Machine Learning Assisted Screening of Intrinsic Rattling

Compounds with Large Atomic Displacement

Kunpeng Yuan^{1*}, Zhaoxuan Feng², Xiaoliang Zhang³, Dawei Tang³

¹College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

 ²State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
 ³Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.

**Corresponding author. yuankp@upc.edu.cn*

1. Input descriptors for traditional machine learning models

The descriptors for materials are the key factors to influence the prediction capability of machine learning models. Wang et al.¹ tested the performance of different types of descriptors through screening crystalline materials with ultralow thermal conductivity. They found that the descriptors based on crystal properties and composition-weighted properties have the best performance. The first part of descriptors includes fundamental properties of crystals, such as space group, number of species, number of atoms per cell, volume per atom, volume per cell, and mass density. The second part of descriptors are composition-weighted elemental properties based on the chemical composition of a given compound. It is defined as

$$\left\langle \mathbf{Q}\right\rangle = \sum_{i} Q_{i} \mathbf{x}_{i} \tag{1}$$

Where Q_i represents the elemental property and x_i is the atomic fraction of the element *i*. The employed elemental properties are listed in Table S1.

Category	Features		
Created properties	Space group, number of species, number of atoms per cell,		
Crystal properties	volume per atom, volume per cell, mass density.		
	Atomic number, valence electrons, atomic mass, group,		
	period, electronegativity, Mendeleev number, global hardness, the		
	orbital exponent of Slater-type orbitals, polarizability,		
Composition-weighted	electrophilicity indices, van der Waals radii, covalent radii, absolut		
properties	radii, electron affinity, molar volume, first ionization energy,		
	boiling point, boiling point, thermal conductivity, atomization		
	enthalpy, fusion enthalpy, vaporization enthalpy, binding energy,		
	atomic density.		

Table S1. The list of features.

2. Spearman's rank correlation

Figure S1. The Spearman's rank correlation coefficient between input descriptors and MSD.

3. Plot of MSD for space group 216, 221, 225, and 227

Figure S2. Variation of MSD with volume per atom for space group (a) 216, (b) 221, (c) 225, and (d) 227. The structure prototypes are marked by different colors.

4. Plot of MSD for triclinic crystal systems

Figure S3. Variation of MSD with volume per atom for triclinic crystal systems in the prediction dataset.

OQMD_ID	Eam1-	MSD_Prediction	Dynamical	MSD_DFT
	Formula	(Å ²)	stability	(Å ²)
309018	Cs3Li	0.3278	Negative	-
344386	Rb3Na	0.2634	Negative	-
348759	Rb3Li	0.2620	Negative	-
308891	Rb3Li	0.2515	Negative	-
348014	Cs3Na	0.2482	Negative	-
305111	RbNa	0.2421	Negative	-
880244	CsRbLi	0.2173	Negative	-
312986	CsNa3	0.2152	Negative	-
882056	CsKLi	0.2124	Negative	-
304929	CsLi	0.2037	Negative	-
945688	CsNaHg	0.2036	Negative	-
881789	CsNaLi	0.2019	Negative	-
346261	K3Li	0.2015	Negative	-
348856	CsNa3	0.1946	Negative	-
307975	Cs3H	0.1897	Negative	-
881355	KRbLi	0.1883	Positive	0.2541
880160	RbNaLi	0.1842	Negative	-
310561	Cs3Ca	0.1834	Positive	0.1927
307303	RbLi	0.1833	Negative	-
984823	CsLiCd	0.1824	Negative	-

5. List of top 20 materials with high MSD

Figure S4. Representative phonon dispersions of materials in prediction dataset. (a) Cs_3Li , (b) Rb_3Na , (c) KRbLi, and (d) Cs_3Ca .

6. Validation list of MSD by first principles calculations

		1	
OQMD_ID	Formula	MSD_Prediction (Å ²)	MSD_DFT (Å ²)
1546965	LiIrRb ₂ Cl ₆	0.1099	0.1166
1549329	HgPtCs ₂ Cl ₆	0.0958	0.0567
1720995	LiAlRb ₂ Cl ₆	0.0943	0.0851
1433001	LiTlCs ₂ I ₆	0.0938	0.0356
1433028	LiHgCs ₂ I ₆	0.0890	0.0512
1546761	TlRhCs ₂ Br ₆	0.0863	0.0907
1575131	InRhCs2Br6	0.0846	0.0451
1344196	LiBiCs ₂ Cl ₆	0.0841	0.0723
1432958	NaLiCs ₂ I ₆	0.0791	0.0629
1575778	KIrCs ₂ Cl ₆	0.0769	0.0698
1721624	InIrCs ₂ Cl ₆	0.0756	0.0431
1543168	KRhCs ₂ Cl ₆	0.0744	0.0737
1575133	AlAgCs ₂ Br ₆	0.0715	0.0406
1549349	KRuCs ₂ Cl ₆	0.0707	0.0642
1575138	AgOsCs ₂ Br6	0.0697	0.0673
1543122	NaCoRb ₂ Cl ₆	0.0638	0.0556
1575765	InRhCs ₂ Cl ₆	0.0579	0.0373
1368340	NaCdCs ₂ F ₆	0.0293	0.0275
1431038	NaLiCs ₂ F ₆	0.0241	0.0253
1706276	NaClBa ₂ O ₆	0.0147	0.0103

Table S3. MSD predicted by machine learning models and calculated by first principles for the selected 20 double perovskite materials.

7. Phonon dispersion and avoided crossing in LiIrRb₂Cl₆

Figure S5. Phonon dispersion of LiIrRb₂Cl₆ colored by participation ratio and zoomed-in regions around avoided crossing points.

References

1. Wang, X.; Zeng, S.; Wang, Z.; Ni, J., Identification of Crystalline Materials with Ultra-Low Thermal Conductivity Based on Machine Learning Study. *The Journal of Physical Chemistry C* 2020, 124, 8488-8495.