SUPPLEMENTARY INFORMATION

Stabilizing Perovskite Quantum Dot Oxygen Sensors through Ultra-Long 2 mm Horizontally Aligned Nanopores in Anodic Alumina Oxide Templates

Johan Iskandar,^{ab} Chih-Yi Liu,^{*bc} Chih-Chien Lee,^d Kuan-Yu Ke,^e M Rivaldi Ali Septian,^{bg} Richie Estrada,^{bf} Humaidi Humaidi,^h Sajal Biring,^{*be} Cheng-Shane Chu,^h Zong-Liang Tseng^{*be} and Shun-Wei Liu^{*bei}

^aVocational School, Pakuan University, Bogor, 16129, Indonesia

^bOrganic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
 ^cCollege of Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
 ^dDepartment of Electronic Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
 ^eDepartment of Electronic Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
 ^fDepartment of Electrical Engineering, Krida Wacana Christian University, Jakarta, 11470, Indonesia
 ^gSchool of Electrical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
 ^gDepartment of Mechanical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
 ^hCenter for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan

*Corresponding authors: liu.chihyi@mail.mcut.edu.tw; swliu@mail.mcut.edu.tw; biring@mail.mcut.edu.tw; zltseng@mail.mcut.edu.tw

Fig. S1 FAPbBr₃ quantum dots dispersed in octane.

Fig. S2 Photographs of samples showing glass with deposited PQDs (PQDs-glass), HAAO alone, and HAAO with embedded PQDs (PQDs-HAAO). The PQDs used in this study are FAPbBr₃ quantum dots.

Fig. S3 Current density–time transient during hard anodization process in 0.3 M H₂SO₄. The inset shows SEM images of a typical HAAO film. The scale bars in the SEM images are 200 nm.

Fig. S4 SEM image of FAPbBr₃ quantum dots.

Fig. S5 The QY characteristics of PQDs with different substrates. (A) Excitation and (B) emission spectra. (C) The changes of QY after stored in oxygen-enriched atmosphere (~20% oxygen) for 1 hour.

Fig. S6 Response of the sensor to different gases of oxygen (100%), ammonia (1000 ppm), and nitric oxide of (1000 ppm).

Fig. S7 Five cycles of response and recovery obtained by repetitively switching between 100% O_2 and 100% N_2 for (A) PQDs-glass and (B) PQDs-HAAO sensors.

Parameters	PQDs-glass	PQDs-HAAO		
Equation	$\frac{I_0}{I} = 1 + (K_D + K_s)$	$(Q]) + K_D K_S [Q]^2$		
Ks	-0.00499 ± 0.00032	-0.00396 ± 0.00018		
K _D	0.0668 ± 0.00356	0.04196 ± 0.00117		
Reduced Chi-Square	0.01401	0.00133		
R-Square	0.99065	0.99841		

 Table S1. Summary of fitting results using second order Stern-Volmer plot.

Gas sensor	Gas type	Response time (s)	Recovery time (s)	Long-term Stability (hours)	References
FAPbI ₃	NO ₂	2	22	72	Ref. ¹
CsPbBr ₃ QDs	H_2S	278	730	216	Ref. ²
MAPbBr ₃	NH_3	7	73	NA	Ref. ³
MAPbBr ₃ QDs	$\rm NH_3$	1000	1000	NA	Ref. ⁴
MAPbBr ₃ -TBA	$\rm NH_3$	61	65	NA	Ref.⁵
CsPbBr ₃	NH_3	8	780	96	Ref. ⁶
FAPbBr ₃ QDs-HAAO	0 ₂	83.9	113.3	504	This work

Table S2. Comparison of the current work and previously reported fluorescent perovskite-based sensors.

 Table S3.
 Detail-fitted parameters of the TRPL decay curves for Fig. 7.

Sample	A ₁	$ au_1$ (ns)	A ₂	$ au_2$ (ns)	A ₃	$ au_3$ (ns)	$ au_{avg}$ (ns)
PQDs-glass fresh	0.25	9.04	0.38	53.69	0.37	188.63	154.35
PQDs-glass after 2 weeks	0.58	3.24	0.39	10.65	0.03	37.94	13.12
PQDs-HAAO fresh	0.36	9.39	0.45	46.06	0.18	140.05	91.85
PQDs-HAAO after 2 weeks	0.41	9.19	0.42	38.52	0.16	121.88	77.03

REFERENCES

- 1 Z. Lu, C. Lou, A. Cheng, J. Zhang and J. Sun, J. Alloys Compd., 2022, **919**, 165831.
- 2 H. Shan, W. Xuan, Z. Li, D. Hu, X. Gu and S. Huang, *ACS Appl. Nano Mater.*, 2022, **5**, 6801–6809.
- 3 G. Li, C. She, Y. Zhang, H. Li, S. Liu, F. Yue, C. Jing, Y. Cheng and J. Chu, Sensors Actuators, B Chem., , DOI:10.1016/j.snb.2020.128918.
- 4 A. K. Singh, S. Singh, V. N. Singh, G. Gupta and B. K. Gupta, J. Colloid Interface Sci., 2019, 554, 668–673.
- 5 G. Li, W. Zhang, C. She, S. Jia, S. Liu, F. Yue, C. Jing, Y. Cheng and J. Chu, *J. Alloys Compd.*, , DOI:10.1016/j.jallcom.2020.155386.
- 6 X. He, C. Yu, M. Yu, J. Lin, Q. Li, Y. Fang, Z. Liu, Y. Xue, Y. Huang and C. Tang, *Inorg. Chem.*, 2020, **59**, 1234–1241.