Supporting Information for "Multiferroic Metallic Monolayer Cu(CrSe₂)₂"

Ke Yang,^{1,2,*} Yuxuan Zhou,^{2,*} Yaozhenghang Ma,² and Hua Wu^{2,3,4,†}

¹College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

²Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics,

and Department of Physics, Fudan University, Shanghai 200433, China

³Shanghai Qi Zhi Institute, Shanghai 200232, China

⁴Shanghai Branch, Hefei National Laboratory, Shanghai 201315, China

Table S1. The calculated magnetic anisotropy energy MAE (meV/f.u.) for $Cu(CrSe_2)_2$ using different k-meshes and cut-off (eV) energies.

k-mesh	$E_{\rm cut}$	010(b)	001(c)
$15 \times 15 \times 1$	500	0	1.084
$15 \times 15 \times 1$	550	0	1.092
$17 \times 17 \times 1$	500	0	1.124

Fig. S1. The Cr 3d, Cu 3d, Se 4p, and total density of states (DOS) are shown for (a) GGA and (b) GGA+U calculations. The corresponding band structures are presented in (c) GGA and (d) GGA+U. The blue (red) curves stand for the up (down) spin channel. The Fermi level is set at zero energy.

		MAE	$J_{\rm top}$	$J_{ m bottom}$	$J_{\rm inter}$	$T_{\rm C}$
C	GA	-2.54	-9.46	-10.36	-1.58	360
$U_{\rm Cu}$	$U_{\rm Cr}$	MAE	$J_{\rm top}$	$J_{\rm bottom}$	$J_{\rm inter}$	$T_{\rm C}$
6	4	-1.08	-5.70	-6.55	-0.18	190
6	5	-1.40	-5.89	-7.09	-0.03	178
7	4	-0.95	-5.73	-6.53	-0.19	190
7	5	-1.30	-5.91	-7.04	-0.04	178

Table S2. The magnetic anisotropy energy (MAE, meV/f.u.), exchange interaction parameter (J, meV), and Curie temperature $(T_{\rm C}, \text{K})$ by GGA + SOC and GGA + SOC + U for different U (eV) values.

Fig. S2. The four magnetic structures of $Cu(CrSe_2)_2$ marked with three exchange parameters.

Table S3. Relative total energies $\Delta E \text{ (meV/f.u.)}$ and local spin moments (μ_B) for the Cu(CrSe₂)₂ monolayer. The derived three exchange parameters are $J_{top} = -5.70$ meV and $J_{bottom} = -6.55$ meV, and the interlayer $J_{inter} = -0.18$ meV. The T_C of 190 K is estimated by MC simulation.

state	Energy	$M_{\rm Cr_{top}}$	$M_{\rm Cr_{bottom}}$	$M_{\rm Cu}$
\mathbf{FM}	0	3.04	3.12	-0.05
AF1	60.17	± 2.93	3.12	-0.03
AF2	52.47	3.05	± 2.98	-0.01
inter-AF	2.38	3.05	-3.12	0.01

Table S4. The relative total energy (meV/f.u.) for the different states is calculated using the four-state method, employing a 3×4 supercell to calculate the Dzyaloshinskii-Moriya (DM) parameters (meV) of the top layer CrSe₂. This involves a pair of nearest Cr ions along the b-axis in the top layer.

$ au_1$	$ au_2$	$(0, \tau_1 S, 0); (0, 0, \tau_2 S)$	$(0,0,\tau_1S); (\tau_2S,0,0)$	$(\tau_1 S, 0, 0); (0, \tau_2 S, 0)$
+	+	0	0	0
_	+	0.247	0.457	124.801
+	_	124.045	-0.169	0.061
_	_	125.836	-0.714	124.938
		$D_x = 0.09$	$D_y = -0.08$	$D_z = 0.09$

Table S5. The relative total energy (meV/f.u.) for the different states is calculated using the four-state method, employing a 3×4 supercell to calculate the DM parameters (meV) of the bottom layer CrSe₂. This involves a pair of nearest Cr ions along the b-axis in the bottom layer.

$ au_1$	$ au_2$	$(0, \tau_1 S, 0); (0, 0, \tau_2 S)$	$(0,0,\tau_1S); (\tau_2S,0,0)$	$(\tau_1 S, 0, 0); (0, \tau_2 S, 0)$
+	+	0	0	0
_	+	0.487	-1.012	121.444
+	_	121.441	0.563	0.319
_	_	122.763	-1.167	122.580
		$D_x = 0.17$	$D_y = -0.11$	$D_z = 0$

Fig. S3. The five magnetic configurations of $Cu(CrSe_2)_2$ are utilized to estimate the second-nearest neighbor J_2 , and the third-nearest neighbor J_3 within the $CrSe_2$ layer.

$$E_{\rm FM,FM} = [3(J_{\rm top1} + J_{\rm top2} + J_{\rm top3}) + 3(J_{\rm bottom1} + J_{\rm bottom2} + J_{\rm bottom3}) + 3J_{\rm inter}] S^{2}$$

$$E_{\rm AF1,FM} = [(J_{\rm top1} - J_{\rm top2} - J_{\rm top3}) + 3(J_{\rm bottom1} + J_{\rm bottom2} + J_{\rm bottom3})] S^{2}$$

$$E_{\rm AF2,FM} = [(-J_{\rm top1} - J_{\rm top2} + J_{\rm top3}) + 3(J_{\rm bottom1} + J_{\rm bottom2} + J_{\rm bottom3})] S^{2}$$

$$E_{\rm AF3,FM} = [(-J_{\rm top1} + J_{\rm top2} - J_{\rm top3}) + 3(J_{\rm bottom1} + J_{\rm bottom2} + J_{\rm bottom3})] S^{2}$$

$$E_{\rm FM,FM'} = [3(J_{\rm top1} + J_{\rm top2} + J_{\rm top3}) + 3(J_{\rm bottom1} + J_{\rm bottom2} + J_{\rm bottom3})] S^{2}$$

$$E_{\rm FM,AF1} = [3(J_{\rm top1} + J_{\rm top2} + J_{\rm top3}) + (J_{\rm bottom1} - J_{\rm bottom2} - J_{\rm bottom3})] S^{2}$$

$$E_{\rm FM,AF2} = [3(J_{\rm top1} + J_{\rm top2} + J_{\rm top3}) + (-J_{\rm bottom1} - J_{\rm bottom2} + J_{\rm bottom3})] S^{2}$$

$$E_{\rm FM,AF3} = [3(J_{\rm top1} + J_{\rm top2} + J_{\rm top3}) + (-J_{\rm bottom1} - J_{\rm bottom2} - J_{\rm bottom3})] S^{2}$$

Table S6. The derived exchange parameters (meV) up to the third-nearest neighbors within the $CrSe_2$ layer. The T_C of 185 K is estimated by MC simulation.

type	J_1	J_2	J_3
top layer	-4.59	-0.73	0.15
bottom layer	-6.23	-0.50	0.56
inter-layer	-0.26	/	/
inter-layer	-0.26	/	

Fig. S4. The phonon spectrum of (a) FE (\pm P) (b) PE', and (c) PE states, see also Fig. 3 in the main text.

Fig. S5. The total-energy evolution in the ab initio molecular dynamics simulation.

Fig. S6. The FE and anti-FE structure. The anti-FE one is less stable by 92 meV/f.u.