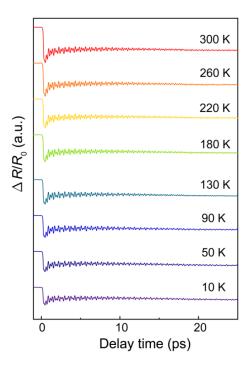
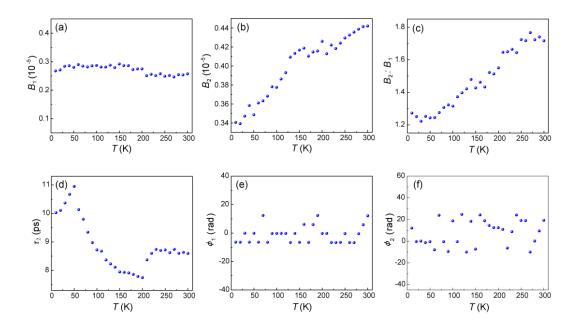
Electronic supplementary information for

Ultrafast carrier and coherent phonon dynamics in van der Waals ferromagnet CrI₃


Chunyang Gou, Junyuan Zhang, and Yang Mi,* S. N. Luo

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, and Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China


*E-mail: miyang@swjtu.edu.cn

Contents

- (1) Fig. S1 Representative $\Delta R(t)/R_0$ signals of CrI₃ collected at 10-300 K.
- (2) Fig. S2 Temperature dependence of fit parameters of the two A_{1g} phonon modes.
- (3) Table S1 Fit parameters for the A_{1g}^1 phonon mode softening in Fig. 4(a) with the anharmonicity model.

FIG. S1. Representative $\Delta R(t)/R_0$ signals of CrI₃ collected at 10-300 K. The $\Delta R(t)/R_0$ traces are shifted along the vertical axis for clarity.

FIG. S2. Temperature dependence of amplitudes, (a) B_1 and (b) B_2 , of the two A_{1g} phonon modes. (c) The ratios (B_2/B_1) as a function of temperature. (d) Dephasing time τ_2 of the A_{1g}^2 phonon mode as a function of temperature. Temperature dependence of initial phases, (e) ϕ_1 and (f) ϕ_2 , of the two A_{1g} phonon modes.

For the oscillatory part of $\Delta R(t)/R_0$ signals, the fitting with Eq. 1 also yields the amplitudes (B_1 , B_1), dephasing time (τ_2), and initial phases (ϕ_1 , ϕ_2) of the two A_{1g} phonon modes, as shown in **Fig. S2**. Generally, the amplitude of coherent phonons decreases with increasing temperature.[1-3] However, our data show abnormal results, although the experiments have been repeated several times. As shown in **Figs. S1(a)** and **1(b)**, B_1 is nearly temperature independent, while B_2 increases with increasing temperature. This result is consistent with the reported data under left circularly polarized (σ_-) pumping in a recent ultrafast study.[4] In their study, the amplitude of A_{1g}^2 coherent phonons is almost the same at 15 and 75 K, while the amplitude of A_{1g}^2 coherent phonons is much larger at 75 K than that at 15 K. The underlying reason is not known yet. **Fig. S1(d)** shows the temperature dependence of dephasing time τ_2 , which is similar to that of τ in Fig. 5. However, the fitting to temperature dependence of dephasing rate (τ_2^{-1}) with the anharmonic phonon model is not satisfactory at 60–200 K. The dynamics of the A_{1g}^2 phonons is beyond our research interest.

Parameter	Value
ω_0 (rad/s)	14.97×10^{12}
D (rad/s)	-3×10^{12}
α_a (K ⁻¹)	2×10^{-6}
α_b (K ⁻¹)	2×10^{-6}
α_c (K ⁻¹)	2×10 ⁻⁵
γ'	1.5

Table S1. Fit parameters for the A_{1g}^{1} phonon mode softening in Fig. 4(a) with the anharmonicity model [Eqs (6)-(8)]. The values of linear thermal expansion coefficients (α_a , α_b and α_c) are available for CrI₃ from previous reports.[5]

References

- [1] J. Guo, W. Liang, and S. N. Luo, J. Phys. Chem. Lett., 2020, 11, 9351-9357.
- [2] F. Mertens, D. Mönkebüscher, U. Parlak, C. Boix-Constant, S. Mañas-Valero, M. Matzer, and M. Cinchetti, *Adv. Mater.*, 2023, 35, 2208355.
- [3] L. L. Hu, M. Yang, Y. L. Wu, Q. Wu, H. Zhao, F. Sun, and J. Zhao, *Phys. Rev. B*, 2019, **99**, 094307.
- [4] P. Padmanabhan, F. L. Buessen, R. Tutchton, K. W. C. Kwock, S. Gilinsky, M. C. Lee, and R. P. Prasankumar, *Nat. Commun.*, 2022, 13, 4473.
- [5] J. Arneth, M. Jonak, S. Spachmann, M. Abdel-Hafiez, Y. Kvashnin, R. Klingeler, *Phys. Rev. B*, 2022, **105**, L060404.