Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Electrochemically controllable emission and coloration using a modified electrode with a layered clay compound containing viologen molecule and Europium(III) complex

Rong Cao, Naoto Kobayashi, Kazuki Nakamura,* and Norihisa Kobayashi*

Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chibashi, Chiba, 263-8522, Japan

E-mail address: koban@faculty.chiba-u.jp; Nakamura.Kazuki@faculty.chiba-u.jp; Fax: +81-43-290-3457; Tel: +81-43-290-3458.

Fig.S1 (a) Chemical structure diagram of HV^{2+} molecules obtained using MM3 calculation in Chem 3D application. Interatomic distances of the HV^{2+} molecules ranging from approximately 0.43 nm to 2.55 nm. (b) Molecular structure diagram of Eu(hfa)₃(TPPO)₂ complex drawn using single crystal X-ray measurement data from ref ⁵² in main text. Interatomic distances of the Eu(hfa)₃(TPPO)₂ complex ranging from approximately 1.08 nm to 1.6 nm.

Fig.S2 (a) Absorption spectra of the HV^{2+} solution, STN/HV^{2+} solution, and STN solution; (b) Absorption spectra of $Eu(hfa)_3(TPPO)_2$ solution, $STN/Eu(hfa)_3(TPPO)_2$ solution, and STN solution.

Fig.S3. Emission spectra of HV^{2+} , STN/HV^{2+} and $STN/HV^{2+}/Eu(hfa)_3(TPPO)_2$ solutions with excitation wavelength of 260 nm. Inset: photographs of the solutions under UV irradiation.

Fig.S4. Absorption spectra of the STN/HV²⁺ hybrid solutions and supernatants (left); (b) Adsorption ratios of HV^{2+} at different ratios (right).

Fig.S5. Absorption spectra of the STN/Eu(hfa)₃(TPPO)₂ hybrid solutions and supernatants (left); (b) Adsorption ratios of Eu(hfa)₃(TPPO)₂ at different ratios (right).

Fig.S6 (a) Normalized emission spectra of Eu(hfa)₃(TPPO)₂, STN/Eu(hfa)₃(TPPO)₂ and STN/HV²⁺/Eu(hfa)₃(TPPO)₂ in the solution. (b) Emission decay curves of Eu(hfa)₃(TPPO)₂, STN/Eu(hfa)₃(TPPO)₂ and STN/HV²⁺/Eu(hfa)₃(TPPO)₂ in the solution at 613 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$). Excitation wavelength was 337 nm.

Fig.S7. (a) Absorption spectra of the STN/ HV^{2+} film under open circuit condition (black line) and applied -2.0 V for 150 s (blue line)

The donor-acceptor distance is expressed using the following equations.

$$r_{DA} = \left(\sqrt[6]{\frac{1}{E}} - 1\right) \times R_0$$

Here, R_{DA} is the donor-acceptor distance, E is the energy transfer efficiency, and R_0 is the Förster distance. The Förster distance is expressed as follows.

$$R_0^6 = \frac{9\Phi_0(ln10)k^2J}{128\pi^5 n^4 N_A}$$

where Φ_0 is the quantum yield of the donor, κ^2 is the dipole orientation factor (2/3), J is the overlap integral, n is the refractive index of the solvent, and N_A is the Avogadro's constant.

The overlap integral of the absorption spectrum of the electrochromic (EC) material and the emission spectrum of the luminescent material is expressed as follows.

$$J = \int f_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda$$

where J is the overlap integral ($M^{-1}cm^3$), f_D is the normalized emission spectrum of the luminescent material, and ε_A is the molar extinction coefficient ($Lmol^{-1}cm^{-1}$) of each EC material.