Supporting information

Performance improvement of resistive switching memory achieved by reducing the size of MoS₂ embedded in poly(vinyl alcohol) films

Zipan Jiao^a, Xinglan Zhou^a, Junjie Yu^a, Xiaoyan Lan^a, Yi Shi^b, Jitong Li^a, Bingxin Liu^a, Yongcheng Li^a, Guilin Chen^c, Riming Hu^d, Peng Zhang^{a, *} and Benhua Xu^{b, *}

^a School of Mechanical Engineering, Qinghai University, Xining 810016, P. R. China.

^b Chemical Engineering College, Qinghai University, Xining 810016, P. R. China.

^c Zhejiang Hikstor Technology Company Ltd., Hangzhou 311300, Zhejiang, China.

^d Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, P.R. China

*Correspondence: zhangpeng@qhu.edu.cn (P. Zhang); xubenhua@qhu.edu.cn (B. H. Xu)

Fig. S1 High-resolution transmission electron microscopy (HRTEM) images of MoS_2 nanosheets.

Fig. S2 EDS mapping of elemental content of MoS_2 nanosheets.

Fig. S3 (a) The UV-vis spectra and (b) corresponding Tauc plots of MoS₂ nanosheets-PVA films and MoS₂ QDs-PVA films.

Fig. S4 AFM map of MoS₂ QDs-PVA hybrid thin film surface.

Fig. S5 The I-V diagram of Al/PVA/ITO/glass device.

Fig. S6. (a-b) SEM image, (c) XRD pattern and (d) Raman pattern of MoS₂ bulks.

Fig. S7 (a) The I-V curves and (b-c) double logarithmic curves of Al/MoS₂ bulks-PVA/ITO/glass devices.

Fig. S8 (a) The I-V curves, (b-c) double logarithmic curves during SET and RESET processes, (d) I-V curves for 150 cycles, and (e) histograms of the distribution of V_{SET} and V_{RESET} for the Al/MoS₂ QDs-PVA/ITO/glass device at a compliance current of 1 mA.

Fig. S9 (a) The I-V curves, (b-c) double logarithmic curves during SET and RESET processes, and (d) I-V curves for 2 cycles for the Al/MoS₂ QDs-PVA/ITO/glass device at a compliance current of 100 mA.

Fig. S10 (a) I-V curves for 100 cycles and (b) I-t plot for Al/MoS₂ nanosheets-PVA/ITO/glass device.

Fig. S11 Weibull distribution of V_{SET} and V_{RESET} for Al/MoS $_2$ QDs-PVA/ITO/glass device.

Parameters	Mean (V)	Standard.	Coefficient	β	X _{63%}
		deviation	of		
		(V)	variation		
V _{SET}	1.98097	0.16951	0.08557	101.6030	2.04
V _{RESET}	-1.56886	0.14833	0.09455	81.4538	1.619

The Weibull cumulative distribution function for V_{SET} and V_{RESET} is defined as ^{11,12}:

$$f = 1 - exp[ii][-\left(\frac{|V|}{\alpha}\right)^{\beta}]$$

where α is the scale parameter of the Weibull distribution at 63.2% and β is the shape/slope parameter, which measures the spread of the distribution.

Fig. S12 Resistance variation of Al/MoS₂ QDs-PVA/ITO/glass device for 100 cycles.

Fig. S13 Ultraviolet photoelectron spectra (UPS) of MoS₂ QDs.

Fig. S14 Ultraviolet photoelectron spectra (UPS) of MoS₂ nanosheets.

Fig. S15 Schematic diagram of the RS mechanism of Al/MoS₂ nanosheets-PVA/ITO/glass device.

Fig. S16 Schematic diagram of crystal structure of (a) MoS₂ nanosheets and (b) MoS₂ QDs. The DOS plots of (c) MoS₂ nanosheets and (d) MoS₂ QDs.

Fig. S17 2D plots of resistive switching corresponding to different temperatures for Al/MoS₂ QDs-PVA/ITO/glass device.

Structures	V_{reset}/V_{set}	Endurance	Retention	Referen
	(V)	cycles	time (s)	ce
Al/MoS ₂ QDs-PVA/ITO/glass	-1.78/2.21	100	104	This
				work
Al/MoS2 QDs/FTO	-1.35/2.2	30	10 ³	[3]
Au/MoS ₂ /Au	-0.9/2.7	20	104	[4]
$Ag/Ta_2O_5/MoS_2$ QDs/Pt	-0.1/0.2	200	104	[5]
Au/MoS ₂ QDs/Au	-0.85/1.2	60	10 ³	[6]
ITO/(MoS ₂ :PS)/Al	-2.5/2.7	25	400	[7]
Al/CPB QDs/MoS ₂ /FTO/glass	-0.55/0.75	100	104	[8]
Ag/MoS ₂ /Au/Ti/PET	-0.8/1.1	90	104	[9]
ITO/QDs/MoS ₂ /TiO ₂ /Pt	-0.95/2.23	100	104	[10]
Ag/ZnO/MoS ₂ QDs/W	-1.52/1.23	200	104	[11]
Al/MoS ₂ -PDA-PFMMA/ITO	-0.9/1.1	60	104	[12]

Tabel S2 Comparison of the key performance parameters of MoS₂-based RRAM device.

Reference

- 1M. Saludes-Tapia, F. Campabadal, E. Miranda and M. B. González, *Solid-State Electronics*, 2023, **207**, 108718.
- 2P. P. Patil, S. S. Kundale, S. V. Patil, S. S. Sutar, J. Bae, S. J. Kadam, K. V. More, P. B. Patil, R. K. Kamat, S. Lee and T. D. Dongale, *Small*, 2023, 19, 2303862.
- 3A. Thomas, A. N. Resmi, A. Ganguly and K. B. Jinesh, Sci. Rep., 2020, 10, 12450.
- 4S. Bhattacharjee, E. Caruso, N. McEvoy, C. Ó Coileáin, K. O'Neill, L. Ansari, G. S. Duesberg, R. Nagle, K. Cherkaoui, F. Gity and P. K. Hurley, *ACS Appl. Mater. Interfaces*, 2020, **12**, 6022–6029.
- 5X. Yu, K. Chang, A. Dong, Z. Gan, K. Jiang, Y. Ling, Y. Niu, D. Zheng, X. Dong, R. Wang, Y. Li, Z. Zhao, P. Bao, B. Liu, Y. Cao, S. Hu and H. Wang, *Applied Physics Letters*, 2021, **118**, 172104.
- 6S. Sharma, Y. Chen, S. R. M. S. Santiago, S. A. Saavedra, C. Chou, K. Chiu and J. Shen, *Adv. Materials Inter.*, 2023, **10**, 2201537.
- 7L. T. Manamel, S. C. Madam, S. Sagar and B. C. Das, *Nanotechnology*, 2021, **32**, 35LT02.
- 8A. P. Deshmukh, K. Patil, S. Ogale and T. Bhave, *ACS Appl. Electron. Mater.*, 2023, 5, 1536–1545.
- 9R. M. Pallares, X. Su, S. H. Lim and N. T. K. Thanh, J. Mater. Chem. C, 2016, 4, 53–61.
- S.-Y. Tang, Y.-C. Shih, Y.-C. Shen, R.-H. Cyu, C.-T. Chen, T.-Y. Yang, M. Chaudhary, Y.-R. Peng, Y.-R. Kuo, W.-C. Miao, Y.-J. Yu, L. Lee, H.-C. Kuo and Y.-L. Chueh, ACS Appl. Electron. Mater., 2024, 6, 1581–1589.
- 11 Y. Li, X. Zhao, K. Chang, Y. Niu, X. Yu and H. Wang, *Phys. Rev. Applied*, 2022, 17, 034007.
- 12 Q. Yan, F. Fan, B. Zhang, G. Liu and Y. Chen, *European Polymer Journal*, 2022, 174, 111316.