Supplementary Information

Highly Stretchable Thermoelectric Generator Integrated from Polyaniline-based Nanocomposites for Body Heat Harvesting

Guoliang Li^{*a*}, Jingda Zhou^{*a*}, Lu Yang^{*a*}, Yuan Deng^{*b*} and Yao Wang^{*a,b**}

^a School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

^b Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310052, China.

Figure S1. XRD patterns of 95 wt.% Ag₂Se/PANI samples cold-pressed at 30 °C and hot-pressed at 210 °C measured at room temperature with standard PDF cards of Ag, α -Ag₂Se and β -Ag₂Se for comparison.

Materials	S (μV K ⁻¹)	PF (mW m ⁻¹ K ⁻²)	к (W m ⁻¹ K ⁻²)	<i>zT</i> @RT	$zT_{\rm max}$	Ref.
<i>n</i> -type Bi ₂ Te _{2 7} Se _{0 3}	-174	1.82	1.16	0.55	0.69 (373 K)	
<i>p</i> -type Bi _{0.4} Sb _{1.6} Te ₃	224	4.09	1.07	1.05	1.12 (373 K)	[81]
Ag ₂ Se	-121	2.23	1.14	0.66	0.68 (350 K)	[S2]
Te	120	0.12	1.96	0.11	0.8 (600 K)	[S3]

Table S1. Comparison on thermoelectric properties of Ag₂Se, Te and Bi₂Te₃-based alloys

Table S2. Electrical transport properties of *n*- and *p*-type PANI-based hybridmaterials obtained from Hall effect measurement and ZEM-3.

Materials	$\mu_{ m H} \ (m cm^2 \ V^{-1} \ m s^{-1})$	n (10 ¹⁹ cm ⁻³)	$R_{ m H} \ ({ m m}^3~{ m C}^{-1})$	ho ($\Omega \cdot$ m)	σ (S cm ⁻¹)
<i>n</i> -95 wt.% Ag ₂ Se/PANI	809.1	1.04	6.02×10 ⁻⁷	7.44×10 ⁻⁶	1344.09
<i>p</i> -80 wt.% Te/PANI	9.3	1.14	5.47×10 ⁻⁷	5.87×10 ⁻⁴	17.04

Figure S2. Variation in the resistivity of PANI film after thermal treatment at different temperatures. The red star symbol represents the resistivity of as-prepared PANI film.

Figure S3. Simulations on the (a) strain and (b) stress distribution in the STEG when stretched at 100% strain.

Figure S4. Compressive strain-stress curves of (a) *n*-type Ag₂Se/PANI and (b) *p*-type Te/PANI nanocomposites.

Figure S5. The designed circuit of TEG harvesting energy from body heat to drive a small fan.

References

- [S1] H. Choi, B. K. Min, S. J. Joo, B. S. Kim, K. Lee, H. Kang, Y. H. Sim, M. J. Yun,
- D. Y. Lee and S. I. Cha, Adv. Energy Mater., 2023, 13, 2301252.
- [S2] S. Lin, L. Guo, X. Wang, Y. Liu, Y. Wu, R. Li, H. Shao and M. Jin, *J. Materiomics*, 2023, 9, 754-761.
- [S3] S. Lin, W. Li, Z. Chen, J. Shen, B. Ge and Y. Pei, Nat. Commun., 2016, 7, 10287.