Supporting Information

Efficient Narrow-band Green Phosphor for Mini-LED Displays Using Dual Strategies of High Concentration Quenching and Energy Transfer

Runtian Kang, Takatoshi Seto*, Yuhua Wang*

National & local Joint Engineering Laboratory for Optical Conversion Materials and

Technology,

School of Physical Science and Technology, Lanzhou University, Lanzhou,730000, China.

* Corresponding author: Takatoshi Seto, Ph. D, Professor. Yuhua Wang, Ph. D, Professor.

E-mail: seto@lzu.edu.cn; wyh@lzu.edu.cn

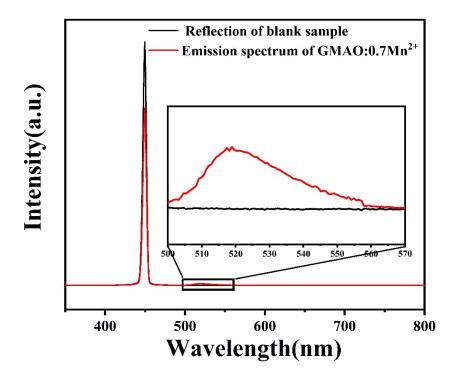


Figure S1. The quantum efficiency measurement spectrum of GMAO:0.7Mn²⁺.

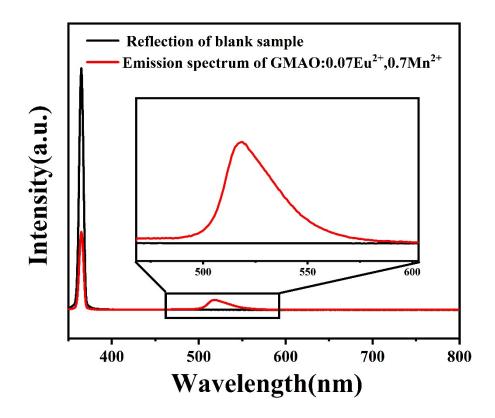


Figure S2. The quantum efficiency measurement spectrum of GMAO: 0.07Eu²⁺, 0.7Mn²⁺.

Calculation S1 Blasses equation

$$R_C = 2 \left(\frac{2 V}{4 \pi N_Z} \right)^{\frac{1}{3}} \#$$

Where C is the total concentration of Eu^{2+} and Mn^{2+} , V is the volume of the unit cell, and N_z is the number of available sites for the dopant in the unit cell. For GMAO: $0.07Eu^{2+}$, $0.7Mn^{2+}$, V = 583.83 Å³, C = 0.77, N_z = 2.

Calculation S2 Average lifetime (τ)

$$\tau = \frac{\left(A_1 \tau_1^2 + A_2 \tau_2^2\right)}{\left(A_1 \tau_1 + A_2 \tau_2\right)}$$

Where t and I are time (ns) and luminous intensity respectively, and A1, A2, and

 τ_1, τ_2 are exponential components of constant and lifetime.

Calculation S3 Energy transfer efficiency (η_T)

$$\eta_T = 1 - \frac{\tau_S}{\tau_S 0}$$

Where τ_{so} is the lifetime of Eu²⁺ when undoped with Mn²⁺ and τ is the lifetime of Eu²⁺ when doped with Mn²⁺.

Calculation S4 Activation energy (ΔE)

$$\ln\left(\frac{I_0}{I} - 1\right) = \ln A - \frac{\Delta E}{KT} \#$$

In this equation, I0 and I are the initial emission intensity and the integral emission intensity with temperature change, respectively. ΔE is the activation energy, a is the constant, and K is the Boltzmann constant (8.62×10⁻⁵eV/K).