Supporting Information

Impact of Hydrogen-Controlled Thermal ALD SiO₂ Insulators on IGZO Channel FET to Optimize the Electrical Performance

Su-Hwan Choi,^{‡a} Dong-Gyu Kim,^{‡b} Jae-Hyeok Kwag,^a Ki-Cheol Song,^{bc} Yeonhee Lee,^c Chang-Kyun Park,^d and Jin-Seong Park^{*ab}

^a Division of Nano-Scale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

^b Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

^c Advanced Analysis Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro, Seongbukgu, Seoul 02792, Republic of Korea

^d Nano Convergence Leader Program for Materials, Parts, and Equipment, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

‡S-H. Choi and D-G. Kim contributed equally to this work.

* Corresponding Author: jsparklime@hanyang.ac.kr

Figure S1. (a) C 1s, (b) N 1s, (c) K 2p, and (d) Na 1s XPS spectra of SiO₂/IGZO stacked films according to the SiO₂ deposition temperature.

Figure S2. (a) XPS depth profile region and the XPS spectra result of stacked $SiO_2/IGZO$ films according to the SiO_2 deposition temperature of (b) 250, (c) 300, (d) 350, and (e) 400 °C in terms of etching time.

Figure S3. I–V output curves of the (a)–(d) as-deposited and (e)–(h) post-annealed TG FET devices with a SiO₂ deposition temperatures of the of (a), (e) 250, (b), (f) 300, (c), (g) 350, and (d), (h) 400 °C.

Figure S4. The I–V transfer curve of (a) the as-deposited FET and after post-annealing at (b) 400, (c) 500, and (d) 600 °C. The SiO₂ GI deposition temperature of FET was 250 °C. (e) Summary of the extracted electrical properties of FET, such as threshold voltage (V_{th}), field-effect mobility (μ_{FE}), hysteresis, and subthreshold swing (S.S.).

Figure S5. The I–V transfer curve of the (a) as-deposited and (b) after post-annealing at 500 °C. The SiO₂ GI deposition temperature of FET was 200 °C. (c) Summary of the extracted electrical properties of FET, such as threshold voltage (V_{th}), field-effect mobility (μ_{FE}), hysteresis, and subthreshold swing (S.S.).

Figure S6. The C-V analysis result and dielectric constant values at the MOS region of TG FET according to the SiO_2 deposition temperature for (a) as-posited and (b) post-annealed.

Figure S7. C–V analysis results of the (a), (b) as-deposited and (c), (d) post-annealed FETs after the ± 1 MV cm⁻¹ field stress at 30 °C for 2 min according to the SiO₂ GI deposition temperatures of (a), (c) 250 and (b), (d) 400 °C.

Figure S8. D-SIMS depth profiles of oxygen intensity for (a) as-deposited and (b) post-annealed SiO₂/IGZO films according to the SiO₂ deposition temperature.

Figure S9. D-SIMS depth profiles of hydrogen concentration for (a) as-deposited and (b) postannealed SiO₂/IGZO films according to the SiO₂ deposition temperature.

Figure S10. RBS and ERD spectra collected from (a)–(d) as-deposited and (e)–(h) post-annealed SiO₂ films with deposition temperatures of the of (a), (e) 250, (b), (f) 300, (c), (g) 350, and (d), (h) 400 °C.

Figure S11. Transfer characteristics (I–V) during the (a)–(d) NBS and (e)–(h) PBS tests for a SiO_2 deposition temperatures of (a), (e) 250, (b), (f) 300, (c), (g) 350, and (d), (h) 400 °C.