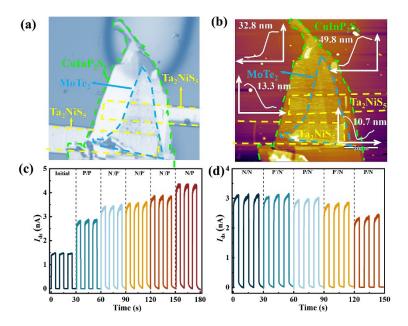

Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information


Ferroelectric polarization-modulated two-dimensional homojunctions for enhanced nonvolatile multistate memory with self-powered optical readout capacity

Yating Wang¹ and Pengfei Hou^{1,*}

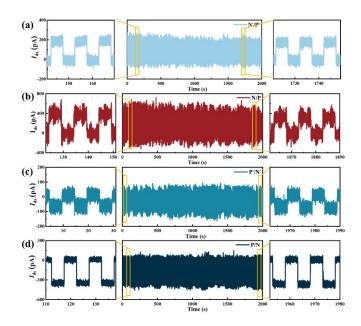

¹ School of Materials Science and Engineering, Xiangtan University, Hunan Xiangtan 411105, China (houpf@xtu.edu.cn)

Figure S1. (a)The optical image. (b) The AFM image show the device with a thickness of 3.26 nm for MoTe₂. The insets show the thickness of MoTe₂, CuInP₂S₆ and Ta₂NiS₅ nanoflakes, respectively. (c, d) the *I*-t characteristics under different states. All measurements were performed at 660 nm, an intensity of 7.96 mW/cm² and zero bias.

Figure S2. (a)The optical image. (b)The AFM image show the device with a thickness of 32.8 nm for MoTe₂. The insets show the thickness of MoTe₂, CuInP₂S₆ and Ta₂NiS₅ nanoflakes, respectively. (c, d) the *I*-t characteristics under different states. All measurements were performed at 660 nm, an intensity of 7.96 mW/cm² and zero bias.

Figure S3. Retention performance of device in four different states, namely N⁻/P⁻ (a), N/P (b), P⁻/N⁻ (c), and P/N(d). All measurements were performed at 660 nm, intensity of 7.96 mW/cm² and zero bias.