Dual switching of dielectric and SHG triggered by thermal driven helical axis transformation with fluorescence characteristics

Yang Zhu,^{a,b} Do-Wen Deng,^b Ji Jin,^a Yu-Hua Wu,^a Yu-Jun Zhao,^a Xin Chen,^a Xiu-Ni Hua,*^a Hai-Bao Duan*^a

^a Key laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China. E-mail: huaxiuni@njxzc.edu.cn, duanhaibao4660@163.com

^b Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China.

Experimental measurement methods

X-ray diffraction studies single-crystal diffraction (SC-XRD)

To deeply study the mechanism of phase transition, single crystal structure was the most significant characterization method. In order to get variable-temperature single crystal X-ray diffraction date, we utilized a Rigaku single-crystal X-ray diffractometer using Mo-K α radiation (λ =0.71073 Å) at 245K, 330K for compound 1 and 263K, 293K, 323K for compound 2. The direct method was employed to solve the crystallographic structure at different temperatures, and we made use of the SHELXTL-2014 program package to correct it by the full matrix least squares method.

Variable-temperature X-ray powder diffraction (VT-PXRD)

Variable-temperature powder X-ray diffraction measurements was characterized from 230 to 330K using a Rigaku D/MAX 2000 PC X-ray diffractometer. The test conditions range from 5 to 50 with a step of 0.02°. The test temperature range for compound 1 is 245-330K, while the test temperature range is 243-333K for compound 2, and corresponding PXRD patterns were obtained.

Differential scanning calorimetry (DSC)

To prove the reversible phase transitions of (N, N-dimethyl-pyrrolidinium)PbCl₃ (compound 1), and (N, N-dimethyl-pyrrolidinium)PbBr₃ (compound 2), DSC measurement was performed by using a Perkin-Elmer DSC instrument in a nitrogen atmosphere. During a heating and cooling cycle, the powder samples were studied in the temperature range of 240 K to 340 K with a rate of 15 K min⁻¹, when added to alumina crucible (sample 1:11.5mg, sample 2: 10.1mg).

The complex dielectric permittivity

For the dielectric measurements, the crystal was ground into powder and pressed into a sheet of about 0.5 mm in thickness. And the sheet was fixed on the electrode with silver glue, covering an area of about 10 mm⁻². The complex dielectric constant ε ($\varepsilon = \varepsilon$ '- i\varepsilon'') was obtained by the TH2828A instrument and should be lower than the melting point of the compound.

Infrared (IR) measurement

The IR measurement was carried out by using a Shimadzu model IR-60 spectrometer at room temperature. Prior to the experiments, the sample was mixed with KBr and ground into a powder, and then it was pressed into a thin and transparent sheet.

SHG measurements.

The compounds were prepared into powders with different particle sizes for SHG response testing. Temperature-varying SHG experiments were performed by using a low-divergence basic laser beam, which pulsed in Nd: YAG. The wavelength is 1064 nm, the peak power is 1.6 MW, the repetition rate is 10 Hz, and the pulse duration is 5 ns.

Fig. S1 Specific reaction equation.

Fig. S2 Measured and simulated powder X-ray diffraction patterns of N, N-Dimethyl pyrrolidinium iodide at 293 K.

Fig. S3 Comparison of powder diffraction patterns of compounds 1 (a) and 2 (b) before and after exposure to air.

Fig. S4 Measured and simulated powder X-ray diffraction patterns of compound 1 at 245 K (a) and 330 K (c); compound 2 at 253 K (b) and 323K (d).

Fig. S5 Infrared spectrum of compound 1 (a) and compound 2.

Fig. S6 TGA of the compound of compound 1 (a) and compound 2 (b).

Fig. S7 Asymmetric unit diagram of compound 1 in the LTP (a) and the HTP (c). The packing structure of compound 1 in the LTP (b) and the HTP (d).

Fig. S8 Asymmetric unit diagram of compound 2 in the LTP (a), RTP (b) and HTP (c). The packing structure of compound 2 in the LTP (d), RTP (e) and HTP (f).

Fig. S9 Schematic diagram of the change in crystal cell volume of compound compound 2.

Fig. S10 Dielectric constant of compound 1 (a) and compound 2 (b) at different frequencies.

Fig. S11 UV-vis absorption spectra of compound 1 and the inset show the Tauc plots (a). The calculated band structures and PDOS of compound 1 (b and c).

Fig. S12 Temperature-dependent PL spectra of compound 2.

Fig. S13 CIE chromaticity coordinates of compound 2 (a). Color changes under UV light irradiation at room temperature (b).

	Calculated results (%)	Experimental results (%)
Compound 1	C:17.41 N:3.38 H:3.42	C:17.38 N:3.43 H:3.42
Compound 2	C:13.17 N:2.56 H:2.58	C:13.21 N:2.61 H:2.56

Table. S1 The chemical elemental analysis test results are shown in the table.

Table. S2 Crystal data and structure refinements for (N, N-dimethyl pyrrolidinium)PbCl₃ at 245 K and 330 K.

Compound	(N, N-dimethyl pyrrolidi	nium)PbCl ₃
Temperature	245 K	330 K
Formula	[C ₆ H ₁₄ N]PbCl ₃	[C ₆ N]PbCl ₃
Formula weight	413.72	399.61
Crystal system	hexagonal	hexagonal
Space group	$P6_1$	P6 ₃ mc
a, b, c (Å)	9.3571(10)	9.4432(4)
	9.3571(10)	9.4432(4)

	22.408(4)	7.6506(5)
α, β, γ (°)	90	90
	90	90
	120	120
Volume /Å3	1699.1(5)	590.83(6)
Z	6	2
Density/g cm ⁻³	2.462	2.246
R ₁	0.0262	0.0299
wR_2	0.0568	0.0916
GOF	1.038	1.060

Table. S3 Crystal data and structure refinements for (N, N-dimethyl pyrrolidinium)PbBr₃ at 253 K, 293 K and 323 K.

Compound	(N, N-dimethyl pyrrolidinium)PbBr ₃		
Temperature	253 K	293 K	323 K
Formula	[C ₆ H ₁₄ N]PbBr ₃	$[C_{18}H_{24}N_3]Pb_3Br_9$	[C ₆ N]PbBr ₃
Formula weight	547.10	1641.30	532.99
Crystal system	hexagonal	hexagonal	hexagonal
Space group	<i>P</i> 6 ₁	<i>P</i> 6 ₃	P6 ₃ mc
a, b, c (Å)	9.6156(3)	16.7130(7)	9.7180(6)
	9.6156(3)	16.7130(7)	9.7180(6)
	22.9958(11)	7.7768(10)	7.7965(12)
α, β, γ (°)	90	90	90
	90	90	90
	120	120	120
Volume /Å3	1841.33(14)	1881.2(3)	637.65(13)
Z	6	2	2
Density/g cm ⁻³	2.960	2.898	2.776
R_1	0.0408	0.0547	0.0546
wR_2	0.0830	0.1319	0.1363
GOF	1.017	1.001	1.123

Table S4. Bond Lengths and Bond Angles for (N, N-dimethyl pyrrolidinium)PbCl₃ at 245 K and 330 K.

Bond lengths [Å] and angles [°]				
245 K				
Pb1—Cl1	2.862 (3)	C2—H2B	0.9800	
Pb1—Cl1 ⁱ	2.918 (3)	C2—C3	1.515 (18)	
Pb1—Cl2	2.890 (4)	С3—НЗА	0.9800	
Pb1—Cl2 ⁱ	2.873 (4)	С3—Н3В	0.9800	

Pb1—Cl3 ⁱⁱ	2.930 (3)	C3—C4	1.514 (19)
Pb1—Cl3	2.940 (3)	C4—H4A	0.9800
N1—C1	1.492 (15)	C4—H4B	0.9800
N1—C4	1.481 (15)	С5—Н5А	0.9700
N1—C5	1.503 (14)	С5—Н5В	0.9700
N1—C6	1.502 (18)	С5—Н5С	0.9700
C1—H1A	0.9800	С6—Н6А	0.9700
C1—H1B	0.9800	С6—Н6В	0.9700
C1—C2	1.501 (18)	С6—Н6С	0.9700
C2—H2A	0.9800		
Cl1—Pb1—Cl1 ⁱ	94.19 (7)	C1—C2—H2A	110.7
Cl1—Pb1—Cl2	84.63 (9)	C1—C2—H2B	110.7
Cl1—Pb1—Cl2 ⁱ	93.67 (8)	C1—C2—C3	105.2 (11)
Cl1 ⁱ —Pb1—Cl3 ⁱⁱ	99.90 (11)	H2A—C2—H2B	108.8
Cl1—Pb1—Cl3 ⁱⁱ	81.91 (10)	C3—C2—H2A	110.7
С11—Рb1—С13	173.34 (10)	C3—C2—H2B	110.7
Cl1 ⁱ —Pb1—Cl3	80.82 (9)	С2—С3—НЗА	110.6
Cl2—Pb1—Cl1 ⁱ	178.14 (8)	C2—C3—H3B	110.6
Cl2 ⁱ —Pb1—Cl1 ⁱ	83.91 (10)	НЗА—СЗ—НЗВ	108.7
Cl2 ⁱ —Pb1—Cl2	94.73 (7)	C4—C3—C2	105.8 (12)
Cl2 ⁱ —Pb1—Cl3	81.47 (11)	C4—C3—H3A	110.6
Cl2 ⁱ —Pb1—Cl3 ⁱⁱ	174.33 (11)	C4—C3—H3B	110.6
Cl2—Pb1—Cl3 ⁱⁱ	81.36 (10)	N1—C4—C3	104.0 (10)
Cl2—Pb1—Cl3	100.25 (11)	N1—C4—H4A	110.9
Cl3 ⁱⁱ —Pb1—Cl3	103.20 (5)	N1—C4—H4B	110.9
Pb1—Cl1—Pb1 ⁱⁱ	81.38 (9)	C3—C4—H4A	110.9
Pb1 ⁱⁱ —Cl2—Pb1	81.68 (9)	C3—C4—H4B	110.9
Pb1 ⁱ —Cl3—Pb1	79.88 (6)	H4A—C4—H4B	109.0
C1—N1—C5	109.8 (9)	N1—C5—H5A	109.5
C1—N1—C6	113.2 (11)	N1—C5—H5B	109.5

C4—N1—C1	102.6 (10)	N1—C5—H5C	109.5
C4—N1—C5	110.5 (10)	H5A—C5—H5B	109.5
C4—N1—C6	112.0 (10)	H5A—C5—H5C	109.5
C6—N1—C5	108.6 (10)	H5B—C5—H5C	109.5
N1—C1—H1A	110.9	N1—C6—H6A	109.5
N1—C1—H1B	110.9	N1—C6—H6B	109.5
N1—C1—C2	104.5 (10)	N1—C6—H6C	109.5
H1A—C1—H1B	108.9	Н6А—С6—Н6В	109.5
C2—C1—H1A	110.9	Н6А—С6—Н6С	109.5
C2—C1—H1B	110.9	Н6В—С6—Н6С	109.5

Symmetry codes: (i) x-y+1, x-1, z+1/6; (ii) y+1, -x+y+2, z-1/6.

Bond lengths [Å] and angles [°]				
	330	0 K		
Pb1—Cl1 ⁱ	2.88 (3)		N1—C2 ^{vii}	1.406 (13)
Pb1—Cl1	2.93 (3)		N1—C3	1.707 (14)
Pb1—Cl1 ⁱⁱ	2.88 (3)		N1—C3 ^{vi}	1.707 (14)
Pb1—Cl1 ⁱⁱⁱ	2.93 (3)		N1—C3 ^{vii}	1.707 (14)
Pb1—Cl1 ^{iv}	2.93 (3)		C1C1 ^{vi}	1.05 (9)
Pb1—Cl1 ^v	2.88 (3)		C1-C1 ^{vii}	1.05 (9)
N1—C2 ^{vi}	1.406 (14	4)	C1—C2	1.610 (14)
N1—C2	1.406 (14	4)	C2—C3	1.493 (14)
Cl1 ⁱ —Pb1—Cl1 ^v	82.2 (10)	C2 ^{vi} —	-N1—C3	127.6 (2)
Cl1v—Pb1—Cl1	98.60 (7)	C2 ^{vii} –	-N1-C3 ^{vi}	127.6 (2)
Cl1 ⁱ —Pb1—Cl1 ^{iv}	179.0 (13)	C2 ^{vi} —	-N1—C3 ^{vi}	56.3 (7)
Cl1—Pb1—Cl1 ^{iv}	80.6 (10)	C2—1	N1—C3 ^{vi}	127.6 (2)
Cl1 ⁱⁱ —Pb1—Cl1	179.0 (13)	C2—1	N1—C3 ^{vii}	127.6 (2)
Cl1—Pb1—Cl1 ⁱⁱⁱ	80.6 (10)	C2 ^{vi} —	-N1—C3 ^{vii}	127.6 (2)
Cl1 ⁱ —Pb1—Cl1	98.60 (7)	C2 ^{vii} –	-N1-C3 ^{vii}	56.3 (7)
Cl1 ⁱ —Pb1—Cl1 ⁱⁱ	82.2 (10)	C2—1	N1—C3	56.3 (7)
Cl1 ⁱⁱ —Pb1—Cl1 ⁱⁱⁱ	98.60 (7)	C2 ^{vii} –	-N1-C3	127.6 (2)

Cl1v—Pb1—Cl1 ⁱⁱⁱ	179.0 (13)	C3—N1—C3 ^{vi}	98 (2)
Cl1 ^{iv} —Pb1—Cl1 ⁱⁱⁱ	80.6 (10)	C3 ^{vi} —N1—C3 ^{vii}	98 (2)
Cl1 ^v —Pb1—Cl1 ⁱⁱ	82.2 (10)	C3—N1—C3 ^{vii}	98 (2)
Cl1 ⁱⁱ —Pb1—Cl1 ^{iv}	98.60 (7)	$C1^{vi}$ — $C1$ — $C1^{vii}$	60.001 (2)
Cl1 ^v —Pb1—Cl1 ^{iv}	98.60 (7)	C1 ^{vi} —C1—C2	110.3 (13)
Cl1 ⁱ —Pb1—Cl1 ⁱⁱⁱ	98.60 (7)	C1 ^{vii} —C1—C2	110.3 (13)
Pb1 ^{viii} —Cl1—Pb1	82.31 (9)	N1—C2—C1	93.4 (11)
C2 ^{vi} —N1—C2	101.0 (19)	N1—C2—C3	72.1 (9)
$C2^{vi}$ —N1— $C2^{vii}$	101.0 (19)	C3—C2—C1	165.5 (16)
C2-N1-C2 ^{vii}	101.0 (19)	C2—C3—N1	51.6 (7)

Symmetry codes: (i) y+1, -x+y+1, z+1/2; (ii) -x+2, -y, z+1/2; (iii) -x+y+2, -x+1, z; (iv) -y+1, x-y-1, Table S5. Bond Lengths and Bond Angles for (N, N-dimethyl pyrrolidinium)PbBr₃ at 253 K, 293 K and 323 K.

Bond lengths [Å] and angles [°]			
	25	53 K	
Pb1—Br1 ⁱ	3.0055 (15)	C2—H2B	0.9800
Pb1—Br1	3.0129 (16)	C2—C3	1.55 (2)
Pb1—Br2 ⁱ	3.0414 (16)	С3—НЗА	0.9800
Pb1—Br2	2.9939 (15)	С3—Н3В	0.9800
Pb1—Br3	3.0526 (17)	C3—C4	1.51 (2)
Pb1—Br3 ⁱ	3.0654 (17)	C4—H4A	0.9800
N1—C1	1.506 (19)	C4—H4B	0.9800
N1—C4	1.514 (15)	С5—Н5А	0.9700
N1—C5	1.43 (2)	С5—Н5В	0.9700
N1—C6	1.509 (18)	С5—Н5С	0.9700
C1—H1A	0.9800	С6—Н6А	0.9700
C1—H1B	0.9800	С6—Н6В	0.9700
C1—C2	1.52 (2)	С6—Н6С	0.9700
C2—H2A	0.9800		
Br1 ⁱ —Pb1—Br1	93.72 (3)	C1—C2—H2A	110.6
Br1—Pb1—Br2 ⁱ	178.92 (4)	C1—C2—H2B	110.6
Br1 ⁱ —Pb1—Br2 ⁱ	85.41 (4)	C1—C2—C3	105.7 (13)

Br1 ⁱ —Pb1—Br3 ⁱ	82.77 (5)	H2A—C2—H2B	108.7
Br1—Pb1—Br3	82.86 (5)	C3—C2—H2A	110.6
Br1 ⁱ —Pb1—Br3	175.00 (5)	C3—C2—H2B	110.6
Br1—Pb1—Br3 ⁱ	98.55 (4)	С2—С3—НЗА	110.8
Br2—Pb1—Br1 ⁱ	93.19 (4)	С2—С3—Н3В	110.8
Br2—Pb1—Br1	86.12 (4)	НЗА—СЗ—НЗВ	108.9
Br2—Pb1—Br2 ⁱ	93.30 (3)	C4—C3—C2	104.8 (12)
$Br2^{i}$ —Pb1— $Br3^{i}$	81.97 (4)	С4—С3—НЗА	110.8
Br2—Pb1—Br3	82.96 (5)	C4—C3—H3B	110.8
Br2 ⁱ —Pb1—Br3	97.98 (4)	N1—C4—H4A	110.5
Br2—Pb1—Br3 ⁱ	173.99 (5)	N1—C4—H4B	110.5
Br3—Pb1—Br3 ⁱ	101.31 (3)	C3—C4—N1	106.2 (12)
Pb1 ⁱⁱ —Br1—Pb1	79.80 (3)	C3—C4—H4A	110.5
Pb1—Br2—Pb1 ⁱⁱ	79.53 (3)	C3—C4—H4B	110.5
Pb1—Br3—Pb1 ⁱⁱ	78.25 (3)	H4A—C4—H4B	108.7
C1—N1—C4	101.9 (10)	N1—C5—H5A	109.5
C1—N1—C6	107.7 (11)	N1—C5—H5B	109.5
C5—N1—C1	113.2 (12)	N1—C5—H5C	109.5
C5—N1—C4	115.3 (12)	H5A—C5—H5B	109.5
C5—N1—C6	109.8 (12)	H5A—C5—H5C	109.5
C6—N1—C4	108.5 (10)	H5B—C5—H5C	109.5
N1—C1—H1A	110.6	N1—C6—H6A	109.5
N1—C1—H1B	110.6	N1—C6—H6B	109.5
N1—C1—C2	105.7 (11)	N1—C6—H6C	109.5
H1A—C1—H1B	108.7	H6A—C6—H6B	109.5
C2—C1—H1A	110.6	H6A—C6—H6C	109.5
C2—C1—H1B	110.6	H6B—C6—H6C	109.5

Symmetry codes: (i) *y*+1, *-x*+*y*+1, *z*-1/6; (ii) *x*-*y*, *x*-1, *z*+1/6.

Bond lengths [Å] and angles [°]

293 К			
Pb1—Br1	3.007 (3)	N1—C5	1.458 (11)
Pb1—Br1 ⁱ	3.047 (3)	N1—C6	1.462 (9)
Pb1—Br1 ⁱⁱ	3.047 (3)	C1—H1A	0.9700
Pb1—Br1 ⁱⁱⁱ	3.007 (3)	C1—H1B	0.9700
Pb1—Br1 ^{iv}	3.007 (3)	C1—C2	1.533 (11)
Pb1—Br1 ^v	3.047 (3)	C2—H2A	0.9700
Pb2—Br2	3.031 (5)	C2—H2B	0.9700
Pb2—Br2 ^{vi}	3.031 (5)	C2—C3	1.528 (10)
Pb2—Br2 ^{vii}	3.031 (5)	С3—НЗА	0.9700
Pb2—Br3 ^{vii}	3.023 (5)	С3—Н3В	0.9700
Pb2—Br3 ^{vi}	3.023 (4)	C3—C4	1.540 (11)
Pb2—Br3	3.023 (4)	C4—H4A	0.9700
Pb3—Br2 ^{viii}	3.030 (5)	C4—H4B	0.9700
Pb3—Br2 ^{ix}	3.030 (5)	С5—Н5А	0.9600
Pb3—Br2 ^x	3.030 (5)	С5—Н5В	0.9600
Pb3—Br3 ^{vii}	3.025 (5)	С5—Н5С	0.9600
Pb3—Br3 ^{vi}	3.025 (5)	С6—Н6А	0.9600
Pb3—Br3	3.025 (5)	С6—Н6В	0.9601
N1—C1	1.460 (10)	С6—Н6С	0.9600
N1—C4	1.484 (11)		
Br1—Pb1—Br1 ⁱⁱⁱ	83.86 (10)	Br3 ^{vi} —Pb3—Br3	82.87 (14)
$Br1^{iv}$ —Pb1—Br1 ⁱ	96.82 (6)	Pb3 ^{xii} —Br2—Pb2	79.55 (10)
Br1 ^{iv} —Pb1—Br1 ^v	179.08 (11)	Pb2—Br3—Pb3	80.28 (10)
Br1—Pb1—Br1 ^{iv}	83.86 (10)	C1—N1—C4	109.1 (12)
$Br1$ — $Pb1$ — $Br1^{v}$	96.82 (6)	C1—N1—C6	108.3 (11)
Br1 ⁱⁱⁱ —Pb1—Br1 ^{iv}	83.86 (10)	C5—N1—C1	115.8 (16)
Br1 ⁱⁱⁱ —Pb1—Br1 ⁱ	179.08 (11)	C5—N1—C4	114.1 (15)
Br1—Pb1—Br1 ⁱⁱ	179.08 (11)	C5—N1—C6	103.0 (15)
Br1 ⁱⁱ —Pb1—Br1 ⁱ	82.50 (10)	C6—N1—C4	105.7 (12)
Br1 ⁱⁱⁱ —Pb1—Br1 ⁱⁱ	96.82 (6)	N1—C1—H1A	113.9

Br1 ⁱⁱⁱ —Pb1—Br1 ^v	96.82 (6)	N1—C1—H1B	113.9
Br1 ^{iv} —Pb1—Br1 ⁱⁱ	96.82 (6)	N1—C1—C2	88.3 (9)
Br1 ⁱⁱ —Pb1—Br1 ^v	82.50 (10)	H1A—C1—H1B	111.1
Br1—Pb1—Br1 ⁱ	96.82 (6)	C2—C1—H1A	113.9
Br1 ⁱ —Pb1—Br1 ^v	82.50 (10)	C2—C1—H1B	113.9
Pb1—Br1—Pb1 ^{xi}	79.92 (8)	C1—C2—H2A	109.1
Br2 ^{vii} —Pb2—Br2 ^{vi}	83.44 (14)	C1—C2—H2B	109.1
Br2 ^{vii} —Pb2—Br2	83.44 (14)	H2A—C2—H2B	107.8
Br2 ^{vi} —Pb2—Br2	83.44 (14)	C3—C2—C1	112.6 (11)
Br3 ^{vi} —Pb2—Br2 ^{vi}	96.69 (11)	С3—С2—Н2А	109.1
Br3 ^{vi} —Pb2—Br2	179.63 (14)	С3—С2—Н2В	109.1
Br3—Pb2—Br2	96.69 (11)	С2—С3—НЗА	111.7
Br3 ^{vi} —Pb2—Br2 ^{vii}	96.92 (10)	С2—С3—Н3В	111.7
Br3 ^{vii} —Pb2—Br2	96.92 (10)	C2—C3—C4	100.4 (10)
Br3—Pb2—Br2 ^{vi}	96.92 (10)	НЗА—СЗ—НЗВ	109.5
Br3—Pb2—Br2 ^{vii}	179.63 (14)	С4—С3—НЗА	111.7
Br3 ^{vii} —Pb2—Br2 ^{vii}	96.69 (11)	С4—С3—Н3В	111.7
Br3 ^{vii} —Pb2—Br2 ^{vi}	179.63 (14)	N1—C4—C3	93.5 (10)
Br3 ^{vi} —Pb2—Br3	82.95 (14)	N1—C4—H4A	113.0
Br3 ^{vii} —Pb2—Br3	82.95 (14)	N1—C4—H4B	113.0
Br3 ^{vi} —Pb2—Br3 ^{vii}	82.95 (14)	С3—С4—Н4А	113.0
Br2 ^{ix} —Pb3—Br2 ^{viii}	83.47 (14)	C3—C4—H4B	113.0
Br2 ^{viii} —Pb3—Br2 ^x	83.47 (14)	H4A—C4—H4B	110.4
Br2 ^{ix} —Pb3—Br2 ^x	83.47 (14)	N1—C5—H5A	109.5
Br3 ^{vi} —Pb3—Br2 ^{ix}	96.95 (10)	N1—C5—H5B	109.5
Br3 ^{vii} —Pb3—Br2 ^{viii}	179.57 (15)	N1—C5—H5C	109.5
Br3 ^{vi} —Pb3—Br2 ^x	179.57 (14)	Н5А—С5—Н5В	109.5
Br3 ^{vii} —Pb3—Br2 ^{ix}	96.71 (11)	Н5А—С5—Н5С	109.5
Br3—Pb3—Br2 ^{viii}	96.95 (10)	Н5В—С5—Н5С	109.5
Br3—Pb3—Br2 ^{ix}	179.57 (14)	N1—C6—H6A	109.9
Br3—Pb3—Br2 ^x	96.71 (11)	N1—C6—H6B	108.4

Br3 ^{vi} —Pb3—Br2 ^{viii}	96.71 (11)	N1—C6—H6C	110.1
Br3 ^{vii} —Pb3—Br2 ^x	96.95 (10)	H6A—C6—H6B	109.5
Br3 ^{vi} —Pb3—Br3 ^{vii}	82.87 (14)	Н6А—С6—Н6С	109.5
Br3 ^{vii} —Pb3—Br3	82.87 (14)	H6B—C6—H6C	109.5

Symmetry codes: (i) x-y, x, z+1/2; (ii) -x, -y, z+1/2; (iii) -x+y, -x, z; (iv) -y, x-y, z; (v) y, -x+y, z+1/2;

	Bond lengths [Å] and angles [°]					
323 K						
Pb1—Br1 ⁱ	3.018 (14)	N1—C2	1.402 (14)			
Pb1—Br1 ⁱⁱ	3.047 (16)	N1—C3	1.700 (14)			
Pb1—Br1 ⁱⁱⁱ	3.047 (16)	N1—C3 ^{vii}	1.700 (14)			
Pb1—Br1 ^{iv}	3.018 (14)	N1—C3 ^{vi}	1.700 (14)			
Pb1—Br1	3.018 (14)	C1—C1 ^{vi}	1.02 (15)			
Pb1—Br1 ^v	3.047 (16)	C1—C1 ^{vii}	1.02 (14)			
N1—C2 ^{vi}	1.402 (14)	C1—C2	1.602 (14)			
N1—C2 ^{vii}	1.402 (14)	C2—C3	1.501 (14)			
Br1 ⁱ —Pb1—Br1 ^{iv}	83.6 (5)	C2 ^{vi} —N1—C3	127.8 (2)			
Br1v—Pb1—Br1 ⁱⁱⁱ	82.6 (5)	C2—N1—C3 ^{vi}	127.8 (2)			
Br1 ^v —Pb1—Br1 ⁱⁱ	82.6 (5)	C2 ^{vi} —N1—C3 ^{vii}	127.8 (2)			
Br1 ⁱ —Pb1—Br1	83.6 (5)	C2—N1—C3	56.9 (7)			
Br1 ^{iv} —Pb1—Br1 ⁱⁱ	179.3 (7)	$C2^{vii}$ —N1— $C3^{vi}$	127.8 (2)			
Br1 ^{iv} —Pb1—Br1	83.6 (5)	C2 ^{vii} —N1—C3	127.8 (2)			
Br1 ^{iv} —Pb1—Br1 ⁱⁱⁱ	96.87 (6)	C2—N1—C3 ^{vii}	127.8 (2)			
Br1 ⁱ —Pb1—Br1 ^v	179.3 (7)	$C2^{vi}$ —N1— $C3^{vi}$	56.9 (7)			
Br1 ⁱ —Pb1—Br1 ⁱⁱ	96.87 (6)	C2 ^{vii} —N1—C3 ^{vii}	56.9 (7)			
$Br1^{iv}$ —Pb1— $Br1^{v}$	96.87 (6)	C3—N1—C3 ^{vii}	99 (3)			
Br1—Pb1—Br1 ⁱⁱ	96.87 (6)	C3—N1—C3 ^{vi}	99 (3)			
Br1—Pb1—Br1 ^v	96.87 (6)	C3 ^{vi} —N1—C3 ^{vii}	99 (3)			
Br1 ⁱⁱⁱ —Pb1—Br1 ⁱⁱ	82.6 (5)	$C1^{vii}$ — $C1$ — $C1^{vi}$	60.000 (15)			
Br1 ⁱ —Pb1—Br1 ⁱⁱⁱ	96.87 (6)	C1 ^{vi} —C1—C2	111 (2)			
Br1—Pb1—Br1 ⁱⁱⁱ	179.3 (7)	C1 ^{vii} —C1—C2	111 (2)			

Pb1—Br1—Pb1 ^{viii}	79.99 (8)	N1—C2—C1	93.9 (11)
C2 ^{vi} —N1—C2 ^{vii}	100 (3)	N1—C2—C3	71.6 (9)
C2 ^{vi} —N1—C2	100 (3)	C3—C2—C1	165.5 (16)
C2—N1—C2 ^{vii}	100 (3)	C2—C3—N1	51.5 (7)

Symmetry codes: (i) -y+1, x-y-1, z; (ii) x-y, x-1, z+1/2; (iii) -x+2, -y, z+1/2; (iv) -x+y+2, -x+1, z; (v)