Electronic Supplementary Information: Unveiling the Magnetism in a Single-Atom-Thick GdPb₃ Kagome Compound on Si(111) via Magnetotransport Measurements

N. V. Denisov¹, L. V. Bondarenko¹, Y. E. Vekovshinin¹, A. N. Mihalyuk^{1,2}, S. V. Eremeev³, D. V. Gruznev¹, A. V. Zotov¹ and A. A. Saranin¹

¹Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia

²Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia

³Institute of Strength Physics and Materials Science, SB RAS, Tomsk 634055, Russian Federation

January 15, 2025

Abstract

Supplemental Materials includes:

1. Sheet magnetoconductivity of the $LaPb_3$ and $YbPb_3$ samples

1 Sheet magnetoconductivity of the LaPb₃ and YbPb₃

Magnetoconductivities of the LaPb₃ and YbPb₃ samples are shown to demonstrate occurrence of the weak antilocalization (WAL) effect in them. The WAL effect is commonly illustrated by the dependencies of the $[\sigma(B) - \sigma(0)]$ versus B, which shape is described by the Hikami-Larkin-Nagaoka theory [1] and in the limit of a strong SOC the weak-field conductance variation can be written as:

$$\Delta\sigma(B) = \frac{\alpha e^2}{\pi h} \left[\psi \left(\frac{1}{2} + \frac{B_{\phi}}{B} \right) - \ln \frac{B_{\phi}}{B} \right],\tag{1}$$

where, ψ is the digamma function, the characteristic field $B_{\phi} = \hbar/4el_{\phi}^2$, l_{ϕ} is dephasing length and \hbar is the Planck's constant. According to the HLN theory, coefficient α equals -0.5 for the the WAL in a 2D system.

By applying equation (1) to the experimental curves [Figures 1ESI (a) and (b)], the fitting parameters of l_{ϕ} and α are obtained, as a function of temperature [Figures 1ESI (c)]. One can see that coefficient α for the both LaPb₃ and YbPb₃ cases is quit close to the expected value of -0.5. Note that the dephasing length l_{ϕ} for the YbPb₃ is essentially greater than that for LaPb₃ at all temperatures. The reason can be related with the validity of the HLN equation. Its usage imply that the transport is in the diffusive and weakly disordered regime, i. e. $k_F l \gg 1$ [2, 3]. This condition is definitely valid for YbPb₃ samples with $R_s \approx 600 \ \Omega/\Box \ (k_F l \approx 40)$, while it is not strict enough for LaPb₃ samples with $R_s \approx 5 \ k\Omega/\Box \ (k_F l \approx 5)$.

Figure 1ESI: Sheet magnetoconductivity of the (a) LaPb₃ and (b) YbPb₃ samples, measured in the field varied from -1.0 to 1.0 T and sample temperatures of 2.7, 4.8, 9.7, and 17.9 K, shown by open circles of various colors. Dashed lines of corresponding color represent theoretical fitting curves based on the HLN theory. (c) Temperature dependencies of coefficient α (blue, right scale) and dephasing length l_{ϕ} (red, left scale) derived from the fits in (a) and (b) for LaPb₃ and YbPb₃, shown by squares and circles, respectively.

References

- S. Hikami, A. I. Larkin, and Y. Nagaoka. Spin-orbit interaction and magnetoresistance in the two dimensional random system. *Progress of Theoretical Physics*, 62 (1980) 707–710.
- [2] G. Bergmann. Inelastic life-time of the conduction electrons in some noble metal films. Zeitschrift für Physik B Condensed Matter, 48 (1982) 5–16.
- [3] J. Chen, X. Y. He, K. H. Wu, Z. Q. Ji, L. Lu, J. R. Shi, J. H. Smet, and Y. Q. Li. Tunable surface conductivity in Bi₂Se₃ revealed in diffusive electron transport. *Phys. Rev. B*, 83 (2011) 241304.